

図5 EStatの例題計算:大電流電子ビームダイオード

2.1 メッシュの生成

EStat の技法と機能の手っ取り早い入門として、図5に示す例を通して作業を進めていくこ とにします。解析空間は、大電流、パルス電力発生装置の出力部を表します。系は円筒対称で あり、寸法の単位はインチです。電圧パルスが、同軸の水充填伝播路から真空絶縁体を経て、 大電流電子ビーム負荷に送られます。電圧パルスの持続時間 100ns は、静電場解析が良い近似 を与えるには十分な長さですが、水中における電気伝導率の影響が無視できる程度の短さです。 Mesh スクリプトの(例題ライブラリとして「EStatExamples」フォルダ内に提供されている) ElectronDiode.MIN が、この解析に必要です。このファイルを作業ディレクトリにコピーして、 TC プログラムランチャのデータフォルダ (*Data folder*) に正しく設定されていることを確認し てください。

Mesh を起動し、ElectronDiode.MIN をロードしてください。「Edit script/graphics」コマ

ンドを指定し、描画エディタに入ってください。ここで、表示機能を用いて、次の領域が設定 されていることを確認してください。

- 1. 真空 (Filled)
- 2. 水 (Filled)
- 3. 真空断熱材 (Filled)
- 4. 成形高電圧内部導体 (Filled)
- 5. 接地真空チェンバ (Filled) の成形部
- 6. 領域5により被覆されない、解析領域の上端部と右側部に沿って設定された接地条件

描画モードを終わらせて(「EXIT」メニューの「Abondan」)、メインメニューに戻ってく ださい。*Process* コマンドをクリックしてください。「PLOT-REPAIR」メニューをクリックス津 と完成されたメッシュが表示されます(図 6)。「Save mesh (MOU)」コマンドを選んでメッシュ を保存してください。これで、**Mesh** を閉じるかまたは最小化しても構いません。

図6 電子ダイオードの例に対する完成されたメッシュ

2.2 EStat スクリプトの作成

TC から EStat を起動してください。画面は始め空白で、ステータスバーはプログラムが入 力待ちであることを示します。1、2 および 3 と数字が付いたボタンに注目してください。この 数字は、静電場解析における 3 つの手順を示すものです。

- 1. プログラム制御と物質特性の設定
- 2. 有限要素方程式の生成と計算
- 3. 計算した解の分析

最初の操作を始めるには、システムの幾何形状を定義する Mesh の出力ファイルを指定す る必要があります。ボタン「1」または「Setup」メニューコマンドをクリックしてください。 ダイアログで、ファイル「ElectronDiode.MOU」を選んでください。EStat はこの情報をロー ドし、図7のダイアログを表示します。表には、各メッシュ領域の行があり、フィル (Fill) ス テータスの表示があります。デフォルトの誘電モードでは、この表に値を入力する 3 つの列、 Potential (固定電圧)、EpsilonR (比誘電率)、および Rho (オプションの空間電荷密度、単位 Coulomb/cm³) があります。

GEOM	ETRY Crintical	-	DUNIT	39.371	Cancel
DEPTA			OHERA		
DEDIA	Mari S.CODE-D	8	UMEGR	1,950	
MAXI	MOLE 500	Ū	Saluti	on type:	
BDUN	DARY	ω.			
	and the second s		0.0	HECT	
SUPERPOS	ITION		CO	anductive	
		Cited.	Potential	EpsionB	Bho
RegNa	Name	Filed	1		
RegNa 1	Name VACUUM	X		1.0	
RegNa 1 2	Name VACUUM WATERXLINE	X		1.0 81.0	
RegNa 1 2 3	Name VADUUM WATERXLINE VACUUMINSULATOR	X X X	1.550	1.0 81.0 7.8	
RegNa 1 2 3 4	Name WACUUM WATERXLINE VACUUMINSULATOR INNERCONDUCTOR	X X X X X	2.5E6	1.0 81.0 7.9	
RegNo 1 2 3 4 5	Name VACJUM WATERXLINE VACUUMINSULATOR INNERCONDUCTOR VACUUMCHAMBER VACUUMCHAMBER	X X X X X X X	2.5E6 0.0	1.0 81.0 7.9	
RegNa 1 2 3 4 5 5 6	Name VACUUM WATERXLINE VACUUMINSULATOR INNERCONDUCTOR VACUUMCHAMBER XLINECHAMBER	X X X X X X	2.5E6 0.0 0.0	1.0 81.0 7.8	
RegNa 1 2 3 4 5 6	Name VACUUM WATERXLINE VACUUMINSULATOR INNERCONDUCTOR VACUUMCHAMBER XLINECHAMBER	X X X X X X X	2.5E6 0.0 0.q	1.0 81.0 7.9	
RegNa 1 2 3 4 5 5 5	Name VACUUM VATERXLINE VACUUMINSULATOR INNERCONDUCTOR VACUUMCHAMBER XLINECHAMBER	X X X X X X X	2.5E6 0.0 0.d	1.0 81.0 7.9	

図7 EStatの制御パラメータと領域特性を設定するダイアログ

このダイアログの「Control parameter」セクションには、次の入力項目があります。

- GEOMETRY:解析の対称性としての、平面 (planar) または円筒 (cylindrical) を選 択します。平面解析は *x-y* 面内での変化を解析し、*z* 軸方向に無限に一定です。円筒解 析はθに関して対称です。
- RESTARGET:有限要素方程式の要素マトリクス反復計算の精度許容値です。
- MAXCYCLE:反復計算におけるサイクル(試行回数)の最大数です。
- BOUNDARY と SUPERPOSITION: 3.5 節で述べる高度なプログラム機能です。
- DUNIT: Mesh ファイルにおいて座標に用いた単位をメートル単位に変換する因子で す。メートルあたりのメッシュ単位数で表します。例えば 39.37 ではインチ単位になり、 100.0 では cm 単位となります。
- OMEGA:反復マトリクス計算を制御する 0.0 から 2.0 を範囲とするパラメータです。
- SOLUTION TYPE:オプションとして、誘電型 (Dielectric) または導電型 (Conductive) を選択します。解析の型については 1.5 節で述べました。

各領域の特性を入力する表の列は、解析の型(SOLUTION TYPE)により異なります。誘 電解析においては比誘電率 ε_r と空間電荷密度 ρ で、導電解析においては電気伝導率 σ です。図 7の表に示されている値は、次の特性を持つことを示しています。

- 領域 1: 誘電体 (真空)、ε₁ = 1.0
- 領域 2: 誘電体 (水)、 ε₁ = 81.0
- 領域 3: 誘電体 (セラミクス)、 ε₁ = 7.8
- 領域 4: 固定ポテンシャル (内部導体)、 φ = 2.5×10⁶
- 領域 5: 固定ポテンシャル (真空チェンバ)、*φ* = 0.0
- 領域 6 : 固定ポテンシャル (境界)、 *φ* = 0.0

図 7 に示された値をダイアログに設定し、「OK」ボタンをクリックしてください。EStat はダイアログの情報に基づいて、表4に示すスクリプト「ElectronDiode.EIN」を作成します。 第7章において、スクリプトのフォーマットと高度なプログラム機能について概説します。 表2 電子ビームダイオードの例に対する EStat の解析スクリプト

```
* File: ElectronDiode.EIN
Mesh = ElectronDiode
Geometry = Cylin
DUnit = 3.9370E+01
ResTarget = 5.0000E-08
Omega = 1.9500E+00
MaxCycle = 5000
Epsi(1) = 1.0000E+00
Epsi(2) = 8.1000E+01
Epsi(3) = 7.8000E+01
Epsi(3) = 7.8000E+00
Potential(4) = 2.5000E+06
Potential(5) = 0.0000E+00
Potential(6) = 0.0000E+00
EndFile
```

2.3 有限要素計算

次のステップは、有限要素方程式を解くことです。「2」という数字の付いたボタンまたは メニューコマンド「Solve」をクリックしてください。ダイアログにデフォルトで入力されてい る ElectronDiode.EIN を受け入れて、「OK」ボタンをクリックしてください。画面は青色にな り、プログラムが計算モードになっていることを示し、ステータスバーは実行進度を表示しま す。この場合、数字は読み取ることができないほど早く変化するのは、解析が 1 秒もかからな いからです。終了すると、EStat は出力ファイル「ElectronDiode.EOU」を作成しますが、こ のファイルには各節点における静電ポテンシャルの値のほか、メッシュに関するすべての情報 が含まれています。3.7 節において、このファイルのフォーマットを述べます。

2.4 解の分析

ここで、「ElectronDiode.EOU」の情報に基づいて、プロットを作成し、定量的な分析を行 うことができます。「3」という数字の付いたボタンまたはメニューコマンド「Analyze」を選び ます。そのダイアログで、デフォルトで選択されているデータファイルを選択してください。 EStat はこのファイルをロードし、分析メニューとツールバーを設定し、図8に示すような等高 線プロットをデフォルトで作成します。作業環境の構成を調べてみてください。画面下端のス テータスバーには、出力ファイル名、データファイル名、プロットしている物理量、プロット タイプ、補間法、およびマウスのスナップス状態などの情報が表示されています。分析操作の 結果をテキストフォーマットでデータファイルに記録するか否かを選択するオプションがあり ます。メインのプロット図は上方左側、プロット図の色分け凡例は上方右側に表示されていま す。下方右側にある配向エリアには、解析空間に現在表示しているプロット図を輪郭線で示す 縮小図が表示されています。「Point calculation」または「Region properties」などの分析コマ ンドに応じて、情報エリアが下方左側に現れます。

図8 分析モードにおける EStat の作業環境

次章で、EStat の分析機能についての詳細な参考資料を示します。図9の3次元表面プロ ット図などの広範囲におよぶプロットを作成して、プログラムの機能を実験してみることがで きます。このセッションを終わるにあたり、自動計算を制御するスクリプトを実行してみまし ょう。ファイルの内容を調べるには、「File」メニューの「Edit script」をクリックし、ファイ ル「ElectronDiode.SCR」を選んでください。表3にファイルの内容を示します。始めのコマ ンドでファイル ElectronDiode.EOU をロードさせ、次のコマンドでデータファイル ElectronDiode.DATを開かせます。「VolumeInt」コマンドは、静電場エネルギーの体積積分を 自動的に開始させます。「Scan」コマンドは、陽極面上のポテンシャルと電場成分からなる 25 のデータ行の組をリスト表示させます。表4はそのリストからの抜粋です。領域1(真空ダイオ ード)における場のエネルギー U_e は143.9 ジュールです。公式 $U_e = CV^2/2$ に $V=2.6 \times 10^6$ を代入 すると、真空ダイオード領域の静電容量は約44.36 pF となります。

表3 EStat 解析スクリプト「ElectronDiode.SCR」

INPUT ElectronDiode.EOU OUTPUT ElectronDiode VOLUMEINT NSCAN 25 SCAN 9.9999 0.0000 9.9999 2.5000 ENDFILE

表4 ElectronDiode.SCR により作成したデータファイルのデータ

```
--- Volume Integrals ---
Energy: 1.681E+03 J
Power: 1.899E+14 W
Epeak: 2.474E+08 V/m
ZPeak: 9.482E+00
RPeak: 1.238E+00
```

I	ntegrals by	region				
NReg	Volume	Energy	Power	PeakE	PeakZ	PeakR
	(m3)	(J)	(W)	(V/m)		
=====						
1	1.372E-02	1.439E+02	1.625E+13	2.474E+08	9.482E+00	1.238E+00
2	6.590E-03	1.401E+03	1.582E+14	3.164E+07	-9.344E-01	6.033E+00
3	7.073E-03	1.366E+02	1.543E+13	3.849E+07	2.014E+00	9.931E+00
4	1.583E-02	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
5	1.342E-02	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00

図9 表面プロット:高さは、|E|を(z, r)の関数として表した値です。