

EStat 6.0

2次元有限要素法静電場解析ソフト

Field Precision LLC

PO Box 13595, Albuquerque, NM 87192 U.S.A. E mail: techinfo@fieldp.com Internet: http://www.fieldp.com

日本国内総代理店

株式会社アドバンスト・サイエンス・ラボラトリー URL: http://asl-i.com Eメール: info@asl-i.com 予備Eメール: info_asl@yahoo.co.jp

目 次

1	はじょ	めに	3
	1.1	プログラムの機能 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
	1.2	EStat の学習方法 ······	4
	1.3	有限要素法解析の手順 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
	1.4	スクリプトとデータファイル ・・・・・・・・・・・・・・・・・・・・・・・・・	8
	1.5	理論的背景	9
2	EStat	t による解の生成と分析	13
	2.1	メッシュの生成 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
	2.2	EStat スクリプトの作成 ······	15
	2.3	有限要素計算	17
	2.4	解の分析	17
3	EStat	t 解析リファレンス	21
	3.1	EStat スクリプトフォーマット ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	21
	3.2	プログラム制御コマンド ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23
	3.3	物質特性のコマンド ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	24
	3.4	異方性物質	25
	3.5	Boundary(境界)および Superposition(重ね合せ)コマンド ・・・・・・・・	27
	3.6	EStat の実行 ······	31
	3.7	EStat 出力ファイルの形式 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	33
4	ポテン	ンシャルと物質量の空間的変化を表す関数式	36
	4.1	プログラムの機能 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	36
	4.2	関数の構文規則	38
	4.3	ベンチマーク例題 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	40
5	計算約	結果の分析	43
	5.1	「FILE」メニューのコマンド ・・・・・・・・・・・・・・・・・・・・・・	43
	5.2	「PLOTS」メニューのコマンド ・・・・・・	45
	5.3	「ANALYSIS」メニューのコマンド	50
	5.4	「SCANS」メニューのコマンド	56
	5.5	分析スクリプトのコマンド ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	58
	5.6	電気力線プロッタ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	61
	5.7	等高線ツール ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	62

図1 スクリーンショット: Analysis モードにおける EStat

第1章 はじめに

1.1 プログラムの機能

EStat は、複雑な 2 次元の幾何形状を持つ物質からなる空間において、静電場を数値解析す る多機能なツールです。数値解析によりシミュレートする体系には、電極、導体、誘電体、お よび空間電荷が含まれます。EStat を構成するパッケージは一体化していて、しかも自己完結型 であり、メッシュの生成、有限要素解析、解の分析とプロット図作成など、問題のすべての局 面に対処します。EStat は、サイズが変化する 3 角形要素に体系を分割することにより物質形状 に適合させ、この 3 角形メッシュに有限要素法を適用して、高精度で高速な解析を行います。 メッシュのサイズは、コンピュータにインストールされているメモリの大きさにより制限され る以外は、自由に決めることができです。EStat のプログラムは、(方位角θに対称な) 3 次元 の円筒座標系および (z 方向には無限で、x 方向とy 方向に任意に変化する) 2 次元の直交座標 系の問題を対象として解析します。Gauss の表面積分、静電エネルギー、および誘導電荷の自動計算のほかに、多くの種類のφおよび E プロット図作成にも、解析関数を用います。

わかりやすいグラフィカルなユーザインターフェイスを用いているので、EStat を習得し、 アプリケーションの実行準備作業を早く行うことが容易にできます。ほかの電場解析ソフトウ ェアに比べて、(異方性物質に対応するなど)高度な機能と完全なデータ透過性が EStat の特長 です。入力操作は、作業を文書化するテキストスクリプトに自動的に記録されます。このスク リプトがあると、解析の再構成が容易になり、共同作業者との分担がしやすくなります。

EStat は、次の2つの極限における静電場解析を行います。

■ 誘電(Dielectric)解析

この解析における物質とは、比誘電率 ε_r と(空間電荷が存在するとき)空間電荷密度 ρ の値を異にする絶縁体(σ =0.0)の集まりです。

■ 導電(Conductive)解析

物質は電気伝導率 $\sigma > 0.0$ を持つ導体です。静電的極限においては、比誘電率 ε_r は電場の 分布に影響を与えることなく、空間電荷密度は $\rho = 0.0$ です。

"誘電"解析は、完全な絶縁体からなる系、または短いパルス電圧が良絶縁体にかかる場合に 該当します。電気めっき装置は"導電"解析の例です。場合によっては、理想絶縁体と理想導体の 混合系をモデル化することも可能です(1.5節参照)。

1.2 EStat の学習方法

このマニュアルが対象とする範囲は、Mesh/EStat パッケージが幅広く機能することを反映 しています。多くのアプリケーションに対処するため、この文書全体を読む必要はありません。 解析を早く開始できるように、章全体を構成しました。経験を徐々に重ねていくに従い、高度 な各種の事項を調べることができます。

●本章の以下の節を大体読み、静電気学の基礎を多少おさらいしてください。プログラムにより深く関わっていくにつれ、(境界条件などの)問題を解決するために、この内容に立ち戻ることになることでしょう。

- 次章にざっと目を通し、TriComp プログラムを起動するソフト、TC を理解してください。
- 「Mesh」のマニュアルの第2章に有限要素解析における形状適合メッシュの基本的な概 念の説明がされていますので、必ず読んでください。
- Mesh マニュアルの第3章では、対話的な Mesh 描画エディタを用いた解析幾何形状の 作成法を説明するために、ウォークスルーの例を取り上げます。この例を説明しながら、 ユーザの皆様が行われるシミュレーションにおいて必要になると思われる基本的なツー ルを紹介します。Mesh マニュアルの第5章では、スクリプトを形状適合メッシュに変換 する仕方について述べます。
- ●本マニュアル第2章を必ず読んでください。ウォークスルーの例では、EStatを用いて有限要素解析を行い、分析する手順を述べます。
- ●本パッケージの中(Examples フォルダ)に提供されている解析例をいくつか実行してみて ください。これらの例を実行することにより、解析オプションについての知ることができ、 ユーザの皆様がご自身で行われる解析の規範となります。
- 経験するにつれ、Mesh/EStatの持つすべての機能を利用したいと思うようになることでしょう。Meshマニュアルの第4章は、Mesh描画エディタの総合的なリファレンスです。 また第5章では、メッシュの処理、プロット図作成、および補修について取り上げます。 本マニュアル第3章と5章で、EStatの計算機能および分析機能について概略します。
- そのあとに続く章では、Mesh における高度な技法について説明します。第6章と7章 においては、スクリプトに直接入力して、高度な制御機能を呼び出す仕方を示します。第 8章においては、写真およびデータイメージから直接メッシュを生成する仕方について述 べます。この機能は、簡単な幾何形状仕様で描くのは困難な複雑で不規則なシステムをモ デル化するときに役立ちます。

1.3 有限要素法解析の手順

EStat で解析するには、有限要素数値解析法を詳細に理解している必要はありません。それ

でも、解析を有効に行うために、基本的な考え方を明確に把握しておくことが大切です。本節 では、EStat 解析における処理手順を理解するうえで必要な参考事項について述べます。

場(field)という用語は、空間のある領域全体にわたり定義された(スカラーまたはベク トル)量のことです。場の例として、静電解析に電場ベクトル E、電磁場解析における電場と磁 場、および熱解析におけるスカラー量の温度などがあります。場の量の変化は、Poisson 方程式 などの連続偏微分方程式により表されるのが普通です(1.5節参照)。これらの方程式は、(たと えば、同心円筒間で、一様な比誘電率 ε, を持つ誘電層など)系の幾何形状および物質特性が簡 単であるときには、解析的方法によって直接解けます。解析的に解くことは、非対称または非 線形物質を持つ系においては、非常に困難なことになります。さらに、閉形式解は、数値的に 評価しなければならない級数展開で表されることがよくあります。最も簡単な問題は別として、 それ以外のすべての問題では、直接的な数値解法を用いる方がより早く、正確であるのが普通 です。

場の数値解法において基本的に問題となるのは、デジタルコンピュータでは連続方程式を 直接解くことができないことです。その代わり、コンピュータは大きな組を構成する線形連立 方程式を解くのによく適しています。(有限差分、有限要素、または境界要素など)すべての場 の数値解法が目標とすることは、支配微分方程式を線形連立方程式に変換することです。線形 方程式の解は、方程式の組が大きくなると、微分方程式の結果に近づきます。

有限要素法の基礎になるのは、解析空間全体を多くの小さな体積要素(element)に分割す ることです。ここで、小さいという用語は、要素の大きさが場の量の変化を表すスケール長よ り非常に小さいということです。解析空間を小さな要素に分割したものは、計算メッシュと呼 ばれています。EStat の 2 次元解析で用いるメッシュの一例を図 2 に示します。この図は、本 マニュアルを通して用いられる 3 つの用語の定義を示すものです。

- 要素 (Element)。系を分割したときの体積単位。
- 節点 (Node)。要素どうしが交差する点。
- ファセット (Facet、切子面)。2つの要素間の境界面。

図2で示した要素は、3角形断面を持っています。平面解析では、断面は x-y 面内にあり、 z 方向には無限長です。円筒解析における要素は、z-r 面内に3角形の断面を持つ軸に関する回 転図形です。

図2 形状適合3角形メッシュにおける用語の定義。

図2に示されたメッシュは、形状適合 (conformality) という重要な特性を持っています。 この用語の意味は、メッシュを構成する 3 角形要素が領域 (region) 間の境界形状に特に適合 するように形成されているということです。その結果、各要素がどの物質に属するかについて、 あいまいさがありません。有限要素法は、次の2つの近似に基づいて成り立っています。1)任意 の要素内では物質特性が一様であること。2)要素が十分に小さく、場の量が簡単な補間法により 近似できること。この2 つの仮定により、微分支配方程式はある節点を取り囲む要素について 積分することができ、線形方程式が得られることになります。この方程式は、その節点におけ る場の量を、その周りの節点における場の量に関係付けます。メッシュの各節点に1つの線形 方程式が結合して、方程式の組を構成しています。EStat においては、Poisson 方程式の解が各 節点における静電ポテンシャルを与えます。それから 2 次元的補間を行い、間にある各点での ポテンシャルを見出すことができ、空間微分を数値的に行い、電場の成分を求めることができ ます。

こうしたことを背景として、EStat 解析における手順を理解することができることになります。

1. ユーザは、アプリケーション(EStat で計算する問題)に対し、その解析空間におけ る物体の境界を定義します。通常、この作業は Mesh の描画エディタを用いて仕上げ ます。解析の精度と実行時間に影響を与える、解析対象の要素サイズなどの制御情報 もまた指定できます。その結果として、たとえば電極や誘電体など、物体の輪郭を形 成する直線や円弧の組が記録されたテキスト(スクリプト)が出来上がります。

- Mesh は指定された境界を解析し、図2に示されたような形状に適合する3角形の組 を自動的に生成します。プログラムは、節点の位置および要素の属する領域をリスト として記述した出力ファイルを作成します。
- 3. ユーザは、解析空間における領域の物質特性を定義します。通常、この作業は EStat における対話型ダイアログにより行われます。
- 4. EStat はメッシュの幾何形状を読み取り、物質パラメータを適用して、大規模な線形 連立方程式を生成します。
- 5. EStat は反復法を用いて連結方程式を解き、節点のポテンシャルと座標を出力ファイ ルに記録します。このファイルは、その後に行う解析のときに再ロードすることがで きることで、解の不変な記録となります。
- ユーザは、EStat のグラフィカルな環境を用いて対話的に解析や検討を行うことがで きます。プログラムはさまざまなプロット図を作成でき、場の量を定量的に計算しま す。ユーザの皆様は、解の複雑な分析を自動的に制御するスクリプトを記述すること ができます。

1.4 スクリプトとデータファイル

Mesh と EStat はいくつかの種類のファイルを読み取り、また作成します。標準的な解析で は、ユーザがファイルを直接処理する必要はありません。ユーザインターフェイスがデータ編 成を管理します。しかし、ユーザが大量のデータを作成する場合は、各計算の結果を個別のフ ォルダに保管しておくのが良いでしょう。また、Mesh と EStat の一部の高度な機能では入力ス クリプトファイルに直接コマンドの入力を必要とするものがあります。利便性のため、すべて の入力スクリプトと出力データファイルはテキスト形式となっています。 また Mesh と EStat はともに、テキストエディタを組み込んでいます。EStat パッケージのファイルの種類と機能を 表1にリストします。拡張子がファイルの機能を表していることに留意してください。

ファイル名	機能
MName.MIN	Mesh の入力スクリプト(基礎メッシュと領域輪郭
	の定義)
MName.MLS	Mesh の診断リスト
MName.MOU	Mesh の出力(節点の位置と要素の領域属性)
EName.EIN	EStat の入力スクリプト(実行制御と物質特性)
EName.ELS	EStat の診断リスト(ログファイル)
EName.EOU	EStat の出力ファイル(節点位置と静電ポテンシャ
	ル)
AName.SCR	自動データ分析用の EStat スクリプト

表1 EStat のファイル

1.5 理論的背景

参考文献の「S. Humphries, Filed Solution on Computers」 (CRC Press, Boca Raton, 1997)に、静電気学の理論と、EStatにおける有限要素法の応用が、詳細に論じられています。 本節では、解析を行う上で役に立つ静電気理論の基礎となる考え方について概説します。

理想的な誘電体および空間電荷の領域においては、静電ポテンシャルゆはポアソン方程式

$$\nabla \cdot \epsilon_r \nabla \phi = -\frac{\rho}{\epsilon_0}.$$
 (1)

により決定されます。

式(1)において、 ε_r は比誘電率、 ρ は空間電荷密度(C/m³)です。一般に、 ϕ 、 ε_r 、および ρ の値は位置により変化します。空間電荷がない場合、式(1)はラプラス方程式の形になります。

$$\nabla \cdot \epsilon_r \nabla \phi = 0. \tag{2}$$

電場とポテンシャルには、次のような関係があります。

$$\mathbf{E} = -\nabla\phi. \tag{3}$$

電極と誘電体表面上の電荷の分布が主として変位電流により影響を受けるとき、式(1)が成 り立ちます。導電性媒質における実電流の定常流をモデル化するときにも、EStatを用いること ができます。導体では、電流密度はポテンシャルのこう配と次のような関係があります。

$$\mathbf{j}_r = \sigma \mathbf{E} = -\sigma \nabla \phi.$$
 (4)

ここで、σは導電率(単位S/m)です。媒質中の電荷の保存は、

$$\nabla \cdot \mathbf{j}_r = 0.$$
 (5)

で表すことができ、式(4)を用いると、

$$\nabla \cdot \sigma \nabla \phi = 0. \tag{6}$$

となります。

式(6)において、

$$\epsilon \Rightarrow \sigma$$
. (7)

と置き換えると、式(2)と同じ形になります。このことは、EStatにおいて、同じプログラムルー チンが誘電体解析と導体解析のどちらにも適用できることを意味します。

誘電体解析または導体解析のどちらを行うのが適切であるかを決める判定条件を導くこと ができます。周波数fで振動するRF(高周波)電場を印加したときに、誘電媒質における変位電 流密度の大きさは、

$$|\mathbf{j}_d| = 2\pi f \epsilon_r \epsilon_0 |\mathbf{E}|.$$
 (8)

により与えられます。

実電流の大きさは式(4)により与えられます。誘電的極限が適用されるのは、

 $|\mathbf{j}_{\mathrm{r}}| \ll |\mathbf{j}_{\mathrm{d}}|$

のとき、または

$$\sigma \ll 2\pi f \epsilon_r \epsilon_0 \cong \frac{\epsilon_r \epsilon_0}{\Delta t}.$$
(9)

であるときです。式(9)における Δt は、非調和な場の変化に対する近似的な時間の長さを示す スケールです。たとえば、100 nsの電圧パルスのときに、導電率が $\sigma << 7.2 \times 10^{-3}$ S/m、または 体積抵抗率が140Ω-mよりはるかに高いときに、脱イオン水を理想的誘電体として取り扱うこ とができます。静電解析が導電的であるのは、

$$\sigma \gg 2\pi f \epsilon_r \epsilon_0 \cong \frac{\epsilon_r \epsilon_0}{\Delta t}.$$
 (10)

のときです。

EStatは、実電流と変位電流がともに顕著な大きさを持つ一般的な解析を取り扱いません。 Field Precision社のRFE2パッケージがこの領域の解析を対象としています。EStatは、混合物 質を構成するいくつかの物質が式(9)を満たし、他の物質が式(10)を満たすような系をモデル化 するときに役立ちます。たとえば、パルス電圧の抵抗プローブを図3に示します。プローブ内部 の導電解析では、式(10)を満たすように調整しました。プラスチックハウジングと真空空間は σ =0.0ですので、式(9)を満たします。図3の誘電解析では、プラスチック領域と真空領域の比誘電 率は、それぞれ ε_r = 2.7および ε_r = 1.0です。 導電領域の解析では、大きな比誘電率の値 ε_r = 1.0×10⁴を指定しました。したがって、抵抗プローブ内の静電解析は、周囲の誘電体にほとんど 依存することなく、導電媒質の形状により決まりました。解析において電場は一様な振幅を持 ち、主に軸方向に向いていることに留意してください。導体内部の解析は、導体を取り囲む絶 縁体内部の静電場解析に対する境界条件を与えます。

図3 誘電体と導体が混在する解析例

最後に、静電解析における境界条件について概説しておきます。境界(boundary)は有限な 解析領域の外縁です。境界上の節点は、次の2つの条件のうち一方を仮定することになります。 ■ Dirichlet境界上の点は、EStatの緩和処理で変化することのない、固定ポテンシャルを 持ちます。一様なポテンシャルを持つ節点の領域(等ポテンシャル領域)は電極を表し ます。電気力線は表面に垂直です。

■ Neumann境界は、ポテンシャルの垂直微分係数が指定される境界です。EStatにおける境界条件は∂φ/∂n=0の場合に限られます。この特定のNeumann境界条件は、電場が境界に平行であることを意味します。有限要素法の利点の一つは、固定ポテンシャルとして設定されていないすべての境界は、この特定のNeumann境界条件を自動的に満たすことです。この条件は、境界が傾斜していても湾曲していても適用されます。

Neumann境界とDirichlet境界は、対称性のある系に対して、計算時間を短縮するために用いられることがよくあります。たとえば、バイポーラ平面電極を持つ系の等電位線のプロットを図4に示します。

y=0.0 における中央平面においては条件 ϕ =0.0 が、x=0.0 に沿っては条件 E_1 =0.0 が満たさ れます。解析空間を x≥0.0、y≥0.0 の範囲に限定し、左側境界に Neumann 境界条件を下端境界 に Dirichlet 境界条件を適用することにより、解析時間が 1/4 に短縮されます。

図4 最上端と最下端にバイポーラ電極のある対称系へのNeumann境界条件の適用。解析は解 析空間の1/4についてのみ行います。特殊なNeumann条件が左端境界に、Dirichlet条件 *φ* =0.0が最下端境界に適用します。

図5 EStat の例題計算:大電流電子ビームダイオード

第2章 EStat による解の生成と分析

2.1 メッシュの生成

EStat の技法と機能の手っ取り早い入門として、図5に示す例を通して作業を進めていくこ とにします。解析空間は、大電流、パルス電力発生装置の出力部を表します。系は円筒対称で あり、寸法の単位はインチです。電圧パルスが、同軸の水充填伝播路から真空絶縁体を経て、 大電流電子ビーム負荷に送られます。電圧パルスの持続時間 100ns は、静電場解析が良い近似 を与えるには十分な長さですが、水中における電気伝導率の影響が無視できる程度の短さです。 Mesh スクリプトの(例題ライブラリとして「EStatExamples」フォルダ内に提供されている) ElectronDiode.MIN が、この解析に必要です。このファイルを作業ディレクトリにコピーして、 TC プログラムランチャのデータフォルダ (*Data folder*) に正しく設定されていることを確認し てください。

Mesh を起動し、ElectronDiode.MIN をロードしてください。「Edit script/graphics」コマ

ンドを指定し、描画エディタに入ってください。ここで、表示機能を用いて、次の領域が設定 されていることを確認してください。

- 1. 真空 (Filled)
- 2. 水 (Filled)
- 3. 真空断熱材 (Filled)
- 4. 成形高電圧内部導体 (Filled)
- 5. 接地真空チェンバ (Filled) の成形部
- 6. 領域5により被覆されない、解析領域の上端部と右側部に沿って設定された接地条件

描画モードを終わらせて(「EXIT」メニューの「Abondan」)、メインメニューに戻ってく ださい。*Process* コマンドをクリックしてください。「PLOT-REPAIR」メニューをクリックス津 と完成されたメッシュが表示されます(図 6)。「Save mesh (MOU)」コマンドを選んでメッシュ を保存してください。これで、**Mesh** を閉じるかまたは最小化しても構いません。

図6 電子ダイオードの例に対する完成されたメッシュ

2.2 EStat スクリプトの作成

TC から EStat を起動してください。画面は始め空白で、ステータスバーはプログラムが入 力待ちであることを示します。1、2 および 3 と数字が付いたボタンに注目してください。この 数字は、静電場解析における 3 つの手順を示すものです。

- 1. プログラム制御と物質特性の設定
- 2. 有限要素方程式の生成と計算
- 3. 計算した解の分析

最初の操作を始めるには、システムの幾何形状を定義する Mesh の出力ファイルを指定す る必要があります。ボタン「1」または「Setup」メニューコマンドをクリックしてください。 ダイアログで、ファイル「ElectronDiode.MOU」を選んでください。EStat はこの情報をロー ドし、図7のダイアログを表示します。表には、各メッシュ領域の行があり、フィル (Fill) ス テータスの表示があります。デフォルトの誘電モードでは、この表に値を入力する 3 つの列、 Potential (固定電圧)、EpsilonR (比誘電率)、および Rho (オプションの空間電荷密度、単位 Coulomb/cm³) があります。

	e13					01	
GEOM	IETRY	Cylindrical	•	DUNIT	39.373	Can	cel
RESTARGET		5.000E-08		OMEGA	1.950		
	MACH E.				1		
MAXI	INCLE	5000		Soluti	ion type		
BDUN	DARY	2		(° D	ielectric		
SUPEREDS	итом						
of children		1			angueove		
RegNa	1	Name	Filed	Potential	EpsionR	Bho	1 =
1	VACUUI	4	×		1.0		
2	WATER	XLINE	X		81.0		
3	VACUUN	MINSULATOR	X	-	7.9		
4	INNERC	ONDUCTOR	8	2.5E6			
-5	VACUUN	MCHAMBER	8	0.0			
6	MLINECI	HAMBER		0,0			4.3

図7 EStat の制御パラメータと領域特性を設定するダイアログ

このダイアログの「Control parameter」セクションには、次の入力項目があります。

- GEOMETRY:解析の対称性としての、平面(planar)または円筒(cylindrical)を選 択します。平面解析は *x*-*y* 面内での変化を解析し、*z* 軸方向に無限に一定です。円筒解 析はθに関して対称です。
- RESTARGET:有限要素方程式の要素マトリクス反復計算の精度許容値です。
- MAXCYCLE:反復計算におけるサイクル(試行回数)の最大数です。
- BOUNDARY と SUPERPOSITION: 3.5 節で述べる高度なプログラム機能です。
- DUNIT: Mesh ファイルにおいて座標に用いた単位をメートル単位に変換する因子で す。メートルあたりのメッシュ単位数で表します。例えば 39.37 ではインチ単位になり、 100.0 では cm 単位となります。
- OMEGA:反復マトリクス計算を制御する 0.0 から 2.0 を範囲とするパラメータです。
- SOLUTION TYPE:オプションとして、誘電型 (Dielectric) または導電型 (Conductive) を選択します。解析の型については 1.5 節で述べました。

各領域の特性を入力する表の列は、解析の型(SOLUTION TYPE)により異なります。誘 電解析においては比誘電率 ε_r と空間電荷密度 ρ で、導電解析においては電気伝導率 σ です。図 7の表に示されている値は、次の特性を持つことを示しています。

- 領域 1: 誘電体 (真空)、ε₁ = 1.0
- 領域 2: 誘電体 (水)、 ε₁ = 81.0
- 領域3:誘電体(セラミクス)、ε₁ = 7.8
- 領域 4: 固定ポテンシャル (内部導体)、 φ = 2.5×10⁶
- 領域 5 : 固定ポテンシャル (真空チェンバ)、*φ* = 0.0
- 領域 6 : 固定ポテンシャル (境界)、 *φ* = 0.0

図 7 に示された値をダイアログに設定し、「OK」ボタンをクリックしてください。EStat はダイアログの情報に基づいて、表4に示すスクリプト「ElectronDiode.EIN」を作成します。 第7章において、スクリプトのフォーマットと高度なプログラム機能について概説します。 表2 電子ビームダイオードの例に対する EStat の解析スクリプト

```
* File: ElectronDiode.EIN
Mesh = ElectronDiode
Geometry = Cylin
DUnit = 3.9370E+01
ResTarget = 5.0000E-08
Omega = 1.9500E+00
MaxCycle = 5000
Epsi(1) = 1.0000E+00
Epsi(2) = 8.1000E+01
Epsi(3) = 7.8000E+01
Epsi(3) = 7.8000E+00
Potential(4) = 2.5000E+06
Potential(5) = 0.0000E+00
Potential(6) = 0.0000E+00
EndFile
```

2.3 有限要素計算

次のステップは、有限要素方程式を解くことです。「2」という数字の付いたボタンまたは メニューコマンド「Solve」をクリックしてください。ダイアログにデフォルトで入力されてい る ElectronDiode.EIN を受け入れて、「OK」ボタンをクリックしてください。画面は青色にな り、プログラムが計算モードになっていることを示し、ステータスバーは実行進度を表示しま す。この場合、数字は読み取ることができないほど早く変化するのは、解析が 1 秒もかからな いからです。終了すると、EStat は出力ファイル「ElectronDiode.EOU」を作成しますが、こ のファイルには各節点における静電ポテンシャルの値のほか、メッシュに関するすべての情報 が含まれています。3.7 節において、このファイルのフォーマットを述べます。

2.4 解の分析

ここで、「ElectronDiode.EOU」の情報に基づいて、プロットを作成し、定量的な分析を行 うことができます。「3」という数字の付いたボタンまたはメニューコマンド「Analyze」を選び ます。そのダイアログで、デフォルトで選択されているデータファイルを選択してください。 EStat はこのファイルをロードし、分析メニューとツールバーを設定し、図8に示すような等高 線プロットをデフォルトで作成します。作業環境の構成を調べてみてください。画面下端のス テータスバーには、出力ファイル名、データファイル名、プロットしている物理量、プロット タイプ、補間法、およびマウスのスナップス状態などの情報が表示されています。分析操作の 結果をテキストフォーマットでデータファイルに記録するか否かを選択するオプションがあり ます。メインのプロット図は上方左側、プロット図の色分け凡例は上方右側に表示されていま す。下方右側にある配向エリアには、解析空間に現在表示しているプロット図を輪郭線で示す 縮小図が表示されています。「Point calculation」または「Region properties」などの分析コマ ンドに応じて、情報エリアが下方左側に現れます。

図8 分析モードにおける EStat の作業環境

次章で、EStat の分析機能についての詳細な参考資料を示します。図9の3次元表面プロ ット図などの広範囲におよぶプロットを作成して、プログラムの機能を実験してみることがで きます。このセッションを終わるにあたり、自動計算を制御するスクリプトを実行してみまし ょう。ファイルの内容を調べるには、「File」メニューの「Edit script」をクリックし、ファイ ル「ElectronDiode.SCR」を選んでください。表3にファイルの内容を示します。始めのコマ ンドでファイル ElectronDiode.EOU をロードさせ、次のコマンドでデータファイル ElectronDiode.DATを開かせます。「VolumeInt」コマンドは、静電場エネルギーの体積積分を 自動的に開始させます。「Scan」コマンドは、陽極面上のポテンシャルと電場成分からなる 25 のデータ行の組をリスト表示させます。表4はそのリストからの抜粋です。領域1(真空ダイオ ード)における場のエネルギー U_e は143.9 ジュールです。公式 $U_e = CV^e/2$ に $V=2.6 \times 10^6$ を代入 すると、真空ダイオード領域の静電容量は約44.36 pF となります。

表3 EStat 解析スクリプト「ElectronDiode.SCR」

INPUT ElectronDiode.EOU OUTPUT ElectronDiode VOLUMEINT NSCAN 25 SCAN 9.9999 0.0000 9.9999 2.5000 ENDFILE

表4 ElectronDiode.SCR により作成したデータファイルのデータ

```
--- Volume Integrals ---
Energy: 1.681E+03 J
Power: 1.899E+14 W
Epeak: 2.474E+08 V/m
ZPeak: 9.482E+00
RPeak: 1.238E+00
```

I	ntegrals by	region				
NReg	Volume	Energy	Power	PeakE	PeakZ	PeakR
	(m3)	(J)	(W)	(V/m)		
=====						
1	1.372E-02	1.439E+02	1.625E+13	2.474E+08	9.482E+00	1.238E+00
2	6.590E-03	1.401E+03	1.582E+14	3.164E+07	-9.344E-01	6.033E+00
3	7.073E-03	1.366E+02	1.543E+13	3.849E+07	2.014E+00	9.931E+00
4	1.583E-02	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
5	1.342E-02	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00

図9 表面プロット:高さは、|E|を(z, r)の関数として表した値です。

マテリアルタイプ	Potential	EpsilonR	Rho
固定電位電極	Х		
等方性誘電体		Х	
等方性導体			Х

表5 EStat ダイアログにおける入力から物質モデルを設定

第3章 EStat 解析リファレンス

3.1 EStat のスクリプトフォーマット

2.2節で示したダイアログを用いて対話的に、またはテキストエディタを用いて、コマンド を直接編集することにより、EStat の制御スクリプトを作成できます。エディタにより、容易に 任意のスクリプトを修正できます。本章では、制御スクリプトを構成するコマンドの構文規則 と機能について詳細に説明します。3.2節では、プログラムの動作を制御するコマンドについて 説明します。これらのコマンドは、(図7に示した)ダイアログの Command parameters セク ションにおける入力に基づいて生成されます。3.3節では、簡単な物質特性を設定するコマンド について概説します。これらのコマンドは、ダイアログの「Region properties」の表に対する 入力に基づいて作成されます。表5は、各領域(region)に設定された物質の種類が、ダイアログ における入力によって、どのように決まるかを表に示しています。残りのセクションでは、プ ログラムの動作と出力ファイルのフォーマットとともに、EStat の高度な機能について説明しま す。

EStat のスクリプトは、コマンドとパラメータを含むデータ行からなるテキストファイルで す。EStat の「Setup」ダイアログを用いて、スクリプトを作成することができます。テキスト エディタを用いても、スクリプトを記述したり、修正したりできます。一部高度な機能には、 直接スクリプトを編集する必要があるものもあります。

スクリプトは「EndFile」コマンドで終わらなければなりません。1つのデータ行の入力項 目は、Mesh のマニュアルで説明した標準の区切り記号により分けて入力することができます。 標準の区切り記号とは、

- スペース""
- コンマ","

です。

区切り記号は、1 つのデータ行にいくつでも用いることができます。空白行とコメント行は無視 されます。コメント行はアステリスク(*) で始めます。EStat では、コマンドの順序を問題に しません。次の例は完全なスクリプトを例示しています。

```
* File CYLPROBE.EIN
GEOMETRY = Cylin
DUNIT = 100
* Region 1: Set to EpsiR = 1.0
EPSI(1) = 1.0
* Region 2: Dielectric sheath
EPSI(2) = 1.0E-6
* Region 3: Probe
POTENTIAL(3) = 1.0
* Region 4: Chamber wall
POTENTIAL(4) = 0.0
ENDFILE
```

プログラム制御と領域特性設定の2種類のコマンドがあります。プログラム制御コマンド には、キーワードと値が含まれています。領域コマンドは、要素と節点に関連する物理的性質 を設定します。領域コマンドは以下のようなフォーマットとなります。

Keyword RegNo Value

ここで整数の「RegNo」は、Mesh の入力ファイルで定義された領域番号です。文字列の「Keyword」は物理的性質を指定します。「Value」は1つ以上の数値です。 一例として、コマンド

POTENTIAL 2 -5500.0

は、領域番号2を持つ節点に、固定ポテンシャル-5.5 kVを設定します。(注記:以前のバージョンとの互換性を保つため、Version 1.0 から 5.0 までの、Set で始まるプログラム制御コマンド、Region で始まる領域コマンドを EStat は認識します。)

3.2 プログラム制御コマンド

以下のセクションでは、コマンドを記号を用いて象徴的に表すとともに、実際の EStat の スクリプトでの書式例を表記します。

MESH MPrefix

MESH SparkGap

シミュレーションの幾何形状を定義する、Mesh の出力ファイルを指定します。このファイルは 「MPrefix.MOU」という名前を持ち、作業ディレクトリ内になければなりません。もし、例え ば「EPrefix.EIN」という名前のスクリプト中において、このコマンドが現れないときは、EStat はデフォルトのメッシュファイルとして、「EPrefix.MOU」という名前のファイルを探します。

DUNIT DUnit

DUNIT = 1.0E4

Mesh においては、都合のよい長さの単位を使うことができます。このコマンドは、Mesh で用 いられた座標を、EStat で用いる標準の単位メートルに変換する係数を定義します。量「DUnit」 は、1メートルあたりの、Mesh で用いられている単位の数を表します。たとえば、Mesh にお いてミクロンを単位としているとき、DUnit=1.0×10⁶としてください。デフォルトの値は 1.00 です。

(注:出力ファイル FPrefix.EOU に記録されている空間量は常にメートルを単位としています。 EStat を用いた解析セッションにおいては、グラフおよびリストファイルにおける空間量は Mesh の単位にスケール変更されています。たとえば、Mesh の単位がセンチメートルであり、 DUnit=100.0 であるときは、プロット図における空間量はセンチメートル単位となります。)

GEOMETRY [Rect, Cylin]

GEOMETRY = Cylin

EStat は、直交座標系および円筒座標系の幾何形状を取り扱います。直交座標の系においては、 解析する量は x および y 軸方向に変化し、z 軸方向に無限遠まで一定であるとして処理します。 円筒座標の系においては、解析する量は方位角対称性を持ち、r および z 軸方向に変化するとし て処理します。パラメータのオプションは Rect (直交座標系) および Cylin (円筒座標系)で す。円筒解析においては、プログラムは Mesh の x 軸方向を z 軸とし、y 軸方向を r 軸とします。 この場合、節点の y 座標が 0.0 より小さいと、プログラムはエラーメッセージを表示します。

OMEGA Omega

OMEGA = 1.96

このコマンドは、マトリックス反復演算の過緩和因子(over-relaxation factor)を、0.0 から 2.0 までの範囲で値を設定します。一般に、この値が大きいほど、収束が速くなります。解析が収 束しないときは、過緩和因子の値を小さくしてください。このコマンドが現れないとき、プロ グラムは Chebyshev の加速法を用いて過緩和因子として最適の値を選びます。

MAXCYCLE MaxCycle

MAXCYCLE = 500

マトリックス反復演算の最大サイクル数です。デフォルト値は2500です。

RESTARGET ResTarget

RESTARGET = 5.0E-6

EStat はマトリックス反復演算をしている間、ポテンシャルの大きさの相対誤差を計算します。 誤差が ResTarget の値より小さくなるとプログラムは計算を終了します。一般に ResTarget の 値が約 1.0×10⁻⁶より小さいとき、十分な精度で解析されます。デフォルト値は、5.0×10⁻⁸です。

3.3 物質特性のコマンド

次の4つのコマンドは等方性物質の特性を定義します。これらの値は、EStat の Setup ダ イアログを用いるか、直接テキストエディタを用いて生成できます。

POTENTIAL RegNo Pot

POTENTIAL(5) = 3500.0

キーワード「Potential」は、ある領域に属する節点のポテンシャルが固定され、マトリクス緩 和により変化しないことを指定します。このコマンドは、ポテンシャルの大きさをボルト(Volt) の単位で設定します。固定されたすべての領域に対して、デフォルト値は 0.0V です。このコマ ンドは、誘電型(dielectric)と導電型(conductive)の解析の両方で使用されます。

EPSI RegNo EpsiR EPSI(3) = 5.8

誘電領域に比誘電率 $\varepsilon_r = \varepsilon / \varepsilon_0 \varepsilon$ 設定します。デフォルト値は、 $\varepsilon_r = 1.0$ です。このコマンド は誘電型(dielectric)解析にのみ適用します。

RHO RegNo Rho

RHO(7) = 3.6E-3

空間電荷密度を C/m³の単位で設定します。この量は導体の問題では物理的に意味がないことか ら、誘電解析においてのみ機能するコマンドです。この場合、コマンド Epsi と Rho はともに同 じ誘電体領域に適用します。

SIGMA Regno Sigma

SIGMA(2) = 0.145

伝導率を S/m の単位で設定します。伝導率はΩ-m を単位とする体積抵抗率の逆数に等しい値で す。このコマンドは導電型(conductive)解析にのみ適用します。

単一の解析においては、Sigma コマンドかまたは Epsi/Rho コマンドのいずれかを用います。 誘電型と導電型の量が混在しているとき、EStat はエラーメッセージを表示します。

3.4 異方性物質

EStat は、2 つの基準軸方向で ε_r の値が異なる異方性誘電体、および σ の値が異なる異方性導体を取り扱うことができます。

EPSI RegNo Epsi1 Epsi2 Theta

EPSI(5) = (5.8, 2.6, 45.0)

2つの基準軸方向で比誘電率が異なる異方性誘電物質を定義します。領域番号のあとの最初の実数値(ε_1)は軸1方向の比誘電率で、2番目の実数値(ε_2)は軸2方向の比誘電率です。デフ オルト値は $\varepsilon_1 = \varepsilon_2 = 1.0$ です。3番目の値(θ)は軸1のx(またはz)軸に対する相対角度で、 度(°)を単位とします。軸2の角度は θ +90°です。円筒座標解析に対しては、構造全体が円筒 対称性を持たなければならないことに留意することが重要です。したがって、 $\theta \neq 0.0$ °である と、軸1と軸2は円錐状になります。そのような物質に出会うことはありそうもないことなの で、実際の円筒座標系のシミュレーションは一般に $\theta = 0.0$ °の場合に限られます(すなわち、z 軸方向とr軸方向の比誘電率が異なる場合だけになります。)

SIGMA RegNo Sigma1 Sigma2 Theta

SIGMA(8) = (5.0, 0.1, 45.0)

異方性の導体を定義します。領域番号のあとの実数値(σ_1)は軸1方向の電気伝導率、2番目の実数値(σ_2)は軸2方向の電気伝導率で、S/mを単位とします。3番目の数値(θ)は、x軸(またはz軸)方向に対する軸1の角度です。

EStat の解析機能は、場のエネルギー、抵抗による電力損失、誘導電荷、および電流密度の 計算に物質の異方性の効果を含めることができます。次の式は直交座標解析に適用しますが、 $x \rightarrow z, y \rightarrow r$ と置換することにより、円筒座標解析にも適用します。異方性導電物質に対して、 電流密度の局所成分と電場には、次の関係があります。

$$\begin{bmatrix} j_x \\ j_y \end{bmatrix} = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{bmatrix} \begin{bmatrix} E_x \\ E_y \end{bmatrix}.$$
(15)

ここで、

$$\sigma_{xx} = \sigma_1 \cos^2 \theta + \sigma_2 \sin^2 \theta,$$

$$\sigma_{xy} = \sigma_{yx} = (\sigma_1 - \sigma_2) \cos \theta \sin \theta,$$

$$\sigma_{yy} = \sigma_1 \sin^2 \theta + \sigma_2 \cos^2 \theta.$$
(16)

電場と電流密度が与えられると、抵抗による電力損失は、

$$p = \frac{1}{2} [j_x E_x + j_y E_y] . \tag{17}$$

となります。

異方性誘電体は、2つの基準軸方向の比誘電率が異なる値(ε_1 および ε_2)を持っています。 印加電場 E_0 (全電場から誘電物質が寄与する電場を差し引いた値)で方程式を表すことにしま す。印加電場は変位ベクトルと次の関係があります。

$$\mathbf{D} = \epsilon_0 \mathbf{E}_0$$
. (18)

印加電場は全電場と次の関係があります。

$$\begin{bmatrix} E_{0x} \\ E_{0y} \end{bmatrix} = \begin{bmatrix} \epsilon_{xx} & \epsilon_{xy} \\ \epsilon_{yx} & \epsilon_{yy} \end{bmatrix} \begin{bmatrix} E_x \\ E_y \end{bmatrix}.$$
(19)

ここで、

$$\epsilon_{xx} = \epsilon_1 \, \cos^2 \theta + \epsilon_2 \, \sin^2 \theta ,$$

$$\epsilon_{xy} = \epsilon_{yx} = (\epsilon_1 - \epsilon_2) \, \cos \theta \, \sin \theta ,$$

$$\epsilon_{yy} = \epsilon_1 \, \sin^2 \theta + \epsilon_2 \, \cos^2 \theta .$$
(20)

となります。静電場エネルギー密度は、

$$u = \frac{\epsilon_0}{2} [E_{0x} E_x + E_{0y} E_y].$$
 (21)

と表すことができます。

導体表面上の誘導電荷密度は、表面に垂直な電場成分で表すことができます。全表面の電荷密度(C/m²)は、次式によって与えられます。

$$\rho = \epsilon_0 E_{\perp}$$
. (22)

全電荷は、電極上の自由電荷および隣接する誘電体における分極電荷の寄与からなります。自 由電荷密度と印加電場の関係は、

$$\rho = \epsilon_0 E_{0\perp}$$
. (23)

により与えられます。

EStat の解析ルーチンは誘電性の量と抵抗性の量のどちらも計算できます。ユーザは、問題とす る特定の計算にどちらが適切かを判断することになります。EStat の動作は、どちらの解析に対 しても同様です。この場合、誘電解析において電流密度として現れる量は、導電解析における 印加電場に等価な量として処理されます。

3.5 Boundary(境界)および Superposition(重ね合せ)コマンド

EStat は、大きな解析空間における小さな特徴的部分の近くの場を正確に計算することがで きます。例として、電界放出チップ近傍の電場の計算を正確に行いたいとします。チップの半 径は、支持電極の外形寸法よりはるかに小さいものです。巨視的な場(解1)を求めるために大 きなスケール(大きな要素)で計算を行う必要がありますが、一方でチップ先端付近の電位のカー ブを計算するには、非常に小さな要素が必要です。アプローチの1つとして、サイズ変化メッ シュ分割を行って小さな要素を生成する方法があります。しかしながら TriComp で用いる構造 化メッシュでは、小さな要素の範囲が解析空間の全長に及ぶことから、この方法には限界があ ります。

図 10 は、もう 1 つのアプローチを例示しています。もとの解析空間内の小区域(緑色の線 で囲んだ区域)を占める第 2 の解析空間を設定します。この小区域での微視的な解析には、小 区域を貫く電極が含まれています。もとのアプローチとの違いは、電極形状が詳細に記述され ることです。課題となるのは、巨視的な場の影響をどのように微視的な解析に正しく取り入れ るかということです。このアプローチでは、EStat が第 2 の解析空間を可変ポテンシャル Dirichlet 境界の中に囲い込みます。境界上のφの値は、巨視的解析との対応点(赤い破線で結 んだ対応点)で補間することにより計算します。全解析は、(丸みを帯びたチップなど)新たな 特徴的部分が境界に近くない限り近似的に正しくなることでしょう。可変ポテンシャル境界は、 解析 2 の制御スクリプト中の次のコマンドにより取り入れることができます。

図 10 微視的解析のために補間した Dirichlet 境界

BOUNDARY FPrefix [BndScale]

BOUNDARY FEmitMacro

文字列「FPrefix」は、解析1の出力ファイルの拡張子を除いたファイル名です。オプションで あるBndScale(実数)は、解析1から解析2に受け渡したポテンシャル値に適用する倍率です。 デフォルトでは、BndScale = 1.0です。

EStat は次の場合、エラーメッセージを表示します。

- 解析1の出力ファイル1 (FPrefix.EOU) が作業ディレクトリで使用可能でないとき
- 解析2が解析1の内部に完全に納まっていないとき
- 解析1と解析2の対称性が異なるとき
- 補間できなかったとき

プログラムはそれ以上の有効性チェックをしません。解析 2 の幾何形状が解析 1 の小区域に正 しくなっていることを、ユーザは確認する必要があります。

解析2の各節点は、次の2つの条件を満たすとき、境界上にあるとみなされます。

- K = 1、 $K = K_{max}$ 、L = 1、 $L = L_{max}$ のいずれかの添字(index)を持つ。円筒対称性のある 解析では、軸上の点(L = 1およびr = 0.0)に Dirichlet 条件を設定しません。
- 隣接する要素の1つが、RegNo = 0を持つ。この条件は、解析2に矩形でない境界を 設定できることを意味します。

図 11 に境界点の基準を例示します。解析 1 は 3.00 インチのギャップで離れた位置にある 2 つ の球面電極間の電場を表しています。ギャップの中央に挿入した小さな誘電体上の場を求めた いとします。解析 2 は、ギャップの中点を中心とする(半径 1.00 インチの)球面領域です。微 視的解析は、半径 0.10 インチの誘電体球を含んでいます。解析 2 の円形外側境界上のポテンシ ャル値の指定に注目してください。円筒対称な解析の下側境界では、Dirichlet 条件は設定され ていません。したがって、軸上ポテンシャルを誘電体の存在に適合させることができます。こ の例の入力スクリプトは、BoundaryVal01 および BoundaryVal02 という名前で、EStat の実 例ライブラリ(EStatExamples フォルダ)に入っています。

図 11 Boundary コマンドを用いた 2 段階解析の例

Superposition コマンドは、大きなスケールの解析(解析 1)で求めた値を小さなスケールの解析(解析 2)に重ね合わせるように EStat に指示します。次のステートメントが解析 2 の コマンドスクリプトに現れます。

SUPERPOSITION FPrefix [SScale]

SUPERPOSITION UniField

文字列 FPrefix は、解析 1 の出力ファイルの拡張を除いたファイル名です。オプションの SScale (実数)は解析 1 から解析 2 に受け渡したポテンシャル値に適用する倍率です。デフォルトで は、SScale = 1.0 です。 このコマンドに対応して、EStat は解析 2 が完了したあと、ファイル FPrefix.EOU を開き ます。出力ファイルに結果を書き込む前に、プログラムは解析 1 の空間において補間を行い、 解析 2 の各節点位置におけるポテンシャル Ø₁を決定し、ポテンシャル値を次式に従って調整し ます。

$$\phi_2' = \phi_2 + SScale \ \phi_1, \tag{24}$$

ユーザは重ね合わせが正しいことを確認する必要があります。静電場解析においては、解析 2 に電極と誘電体が存在することによって、解析 1 の巨視的場に著しい局所的変化を生じさせる ことがありますので、単純な重ね合わせは有効にはならないでしょう。

3.6 EStat の実行

EStat は一つのウィンドウでの対話的プログラムとして、またバックグランドタスクとして 実行することができます。コマンドプロンプトからプログラムを実行するには、次の形式のコ マンドを用いてください。

[ProgPath¥]ESTAT [DataPath¥]FPrefix <ENTER>

ここで、ファイル FPrefix.EIN、およびそれに対応する Mesh 出力ファイルがデータディレクト リに存在する必要があります。この機能により、DOS バッチファイルまたは Perl スクリプトを 用いて、EStat の長時間にわたる自律的な実行を設定することができます。

本節の残りの部分では、EStat を対話的モードで実行したときのメインメニューにおけるコ マンドについて説明します。プログラムを TC から起動するか、入力ファイルのファイル名なし で実行したときに、この対話的モードに入ります。「File」メニュー内には、次のコマンドが現 れます。

EDIT SCRIPT (EIN)

EDIT LISTING (ELS)

EDIT FILES

これらのコマンドは、内部エディタを呼び出し、EStatの入力ファイルと出力ファイルをチェックしたり、修正するときに用います。ほかのディレクトリからファイルを選んでも、作業ディ

レクトリは変わりません。Edit script (EIN)コマンドは、FPREFIX.EIN という形の名前の付い たすべてのファイルをリスト表示し、Edit listing (ELS)は FPREFIX.ELS という名前の付いたフ ァイルをリスト表示します。

RUN ANALYSIS SCRIPT

一連の似た内容の解析について、複雑な、または繰り返しの分析を行いたい場合に、解析スク リプトを使います。このコマンドをクリックすると、「.SCR」という拡張子の付いたファイルを リスト表示するダイアログが現れます。リストからファイルを選んで、OK ボタンをクリックし てください。このスクリプトによって、出力ファイルのロード、データ記録ファイルのオープ ンおよびクローズ、本章で述べたすべての定量的解析機能を実行できます。スクリプトのコマ ンド言語については 5.5 節で述べます。解析スクリプトは、データファイルと同じディレクトリ になければなりません。

SETUP

このコマンドの機能は、静電解析を制御する EStat スクリプトを作成します。プログラムは、 始めに Mesh の出力ファイルの入力を促し、系の幾何形状を定義します。ファイルのプレフィ ックスは、Mesh スクリプトコマンドの引数 (argument) として用います。次に、プログラム は図 27 に示したダイアログを表示します。ダイアログにおける領域の数は、Mesh の出力ファ イルにより決められます。上側のボックスにおける制御パラメータの機能については 7.2 節で述 べました。下側のボックスには表があり、領域の基本的な物理的性質を入力することができま す (7.3 節参照)。異方性物質のような高度な機能を実行するには、スクリプトの編集を直接行 う必要があります。

「SOLVE」メニューには、次の2つのコマンドがあります。

RUN

(FPrefix.EIN などの)入力ファイルを選んで、計算を始めます。ほかのディレクトリからファ イルを選ぶと、作業ディレクトリが変わります。ファイル FPrefix.MOU または Mesh コマンド で指定したファイルがあると、計算が始まります。計算を行っている間、画面の色が青くなり、 進行状態がステータスバーに示されます。

STOP

このコマンドは EStat の実行を停止し、緩和計算の現在の状態を保存します。たとえば、収束

32

の途中で、問題が正しく定義されているかチェックしたいときに、緩和計算を停止したい場合 などです。

ANALYZE メニュー

FPrefix.EOU という形式のファイルを選び、プロット図作成と数値解析をするための分析モー ドメニューを呼び出します。

HELP メニュー/ESTAT MANUAL

デフォルトのPDF表示ソフトに本マニュアル(estat.pdf)を表示させます。ファイル「estat.pdf」 は estat.exe と同じディレクトリになければなりません。

3.7 EStat 出力ファイルの形式

EStat の出力ファイル FPrefix.EOU はテキストフォーマットです。このファイルは、次の3 つのセクションからなります。

- 実行内容についての一般情報を記述するヘッダ
- 節点と要素についての情報
- 領域についての情報

ヘッダセクションは、タイトル行と9つのデータ行からなります。

```
--- Run parameters ---

XMin: -1.270003E-01

XMax: 1.270003E-01

KMax: 101

YMin: 0.000000E+00

YMax: 2.540005E-01

LMax: 101

DUnit: 3.937000E+01

NReg: 5

ICylin: 1
```

2 行目と3 行目は、解析領域の水平軸 (x または z) 方向の下限 X_{min} と上限 X_{max}を表しています。

寸法はメートル(m)単位です。4 行目の K_{max}は水平軸方向の節点の数です。5~7 行目は、垂直軸方向(yまたは r) に関する同様の項目です。8 行目は、Mesh で使用した寸法をメートル(m)の単位に変換する換算係数 DUnit です。9 行目は解析に含まれる領域の数です。10 行目は対称性の指定です(0: 直交、1: 円筒)。

節点セクションは、4行のタイトルと、解析空間の各節点に1行が対応する $K_{max} \times L_{max}$ のデータ行です。

 k	Nodes 1	RgNo	RgUp	RgDn	x	У	Phi
1	L 1	-2	2	0	-1.270003E-01	0.000000E+00	-1.000000E+03
2	2 1	-2	2	0	-1.243827E-01	0.00000E+00	-1.000000E+03
3	31	-2	2	0	-1.217702E-01	0.00000E+00	-1.000000E+03
4	1 1	-2	2	0	-1.191645E-01	0.00000E+00	-1.000000E+03
5	51	-2	2	0	-1.165665E-01	0.00000E+00	-1.000000E+03
98	3 101	-1	0	1	1.198864E-01	2.540005E-01	9.449078E+02
99	9 101	-1	0	1	1.224252E-01	2.540005E-01	9.645715E+02
100	0 101	-1	0	1	1.249641E-01	2.540005E-01	9.842325E+02
101	l 101	-5	0	0	1.270003E-01	2.540005E-01	9.999997E+02

各データ行には、次の量が表示されています。

- 節点の添字 (*K*, *L*)
- 節点の領域番号 (*RgNo*) と、その節点に伴う2つの要素の領域番号 (*RgUp* と *RgDn*)
 上側の要素は節点 (*K*, *L*) と (*K*+1, *L*) を結ぶ線の上側にあり、下側の要素はその線の
 下側にあります。
- メートル (m) 単位で表した節点の座標(*x*, *y*)または (*z*, *r*)
- ボルト (V) 単位で表した節点における静電ポテンシャル φ

領域セクションは、4 行のタイトルに続き、各領域に 1 つの行が対応する行数 NReg のデー タ行です。誘電体の解析における領域セクションは、次のようになります。

Reg RegNo I	gions Fix					Epsilon	Space charge	Potential
1	0	0	0	0	0	1.000000E+00	0.000000E+00	0.000000E+00
2	0	0	0	0	0	2.700000E+00	0.000000E+00	0.000000E+00

導体の解析における領域セクションは、次のようになります。

Reg RegNo 1	gions Fix					Sigma		Potential
1	0	0	0	0	0	1.000000E+00	0.000000E+00	0.000000E+00
2	0	0	0	0	0	2.700000E+00	0.000000E+00	0.000000E+00

第2列目における1は、固定ポテンシャル領域(電極)を指定します。

第4章 ポテンシャルと物質量の空間的変化を表す関数式

4.1 プログラムの機能

3.3 節では、領域全体にわたり一様なポテンシャル値または物質特性(ε_r , σ 、および ρ) を定義するコマンドについて説明しました。本節では、空間で連続的に変化する量を数学的記 述により指定する方法について述べます。以下のコマンドを用いると、空間的に変化する領域 特性の指定が容易になります。

POTENTIAL RegNo > 関数

POTENTIAL(5) > 1.50E4*cos(\$x/20.5)*sin(\$y/15.0) + 1.3E03

POTENTIAL(2) > $80.245^{*}(1.0 - 0.0625^{*}z \land 2 + r \land 2)$

空間の関数を指定して、固定ポテンシャル領域の節点における ϕ の値(単位 V)を設定します。 キーワード「Potential」のあとに領域番号と記号 > を、そのあとに関数の文字列を入力します。 関数の英数文字列の長さは 230 字までで、次節で述べるフォーマットに従って入力します。 直交座標解析では f(x, y)、円筒座標解析では f(z, t)により、空間において変化する量を表す関数 を定義します。パーサ(構文解析プログラム)は、変数に Perl 標準(Perl standard)フォーマ ットを用い、変数 $x \in \mathbf{Sx}$ 、変数 $y \in \mathbf{Sy}$ 、といったように表します。節点におけるポテンシャル は、節点の位置で求めた関数の値です。

- 用いる関数の数に制限はありません。どの領域にも一つの関数を指定できます。
- 位置は DUnit(cm、インチ、μm 等)により設定した単位で関数に渡されます。
- ある空間を2つ以上の領域に分割することにより、不連続な関数をモデル化できます。
- 空間的変化は、充填された領域(Filled regions)だけでなく線状領域(繋がった線、繋が っていない線)領域に対しても、設定できます。

POTENTIAL RegNo TABLE [x,y,z,r] TabName POTENTIAL(3) = TABLE R ZUpBoundary.DAT

空間分布を表す表(table)を指定して、固定ポテンシャル領域の節点における Øの値(単位V)を 設定します。 ここで表とは、次節で説明される書式で記述されたテキストファイルで、作業デ ィレクトリに置いておく必要があります。キーワード「Potential」のあとに領域番号とキーワ ード「Table」を入力します。表は一次元でなくてはならないので、コマンドは空間分布の方向 を示す記号を含む必要があります。 直交座標系では*x、y、r*が使用可能です。この場合、rは以 下のように解釈されます。

$$r = \sqrt{x^2 + y^2}.\tag{21}$$

円筒座標系ではzとr が使用可能です。「TabName」の部分には表のファイル名を入力します。 節点位置はDUnit (cm、インチ、μm等)により設定した単位で表補間ルーチンに渡されます。 表は V 単位でポテンシャル値が記述されている必要があります。

EPSI RegNo > 関数

EPSI(7) > 1.0 + (\$x - 0.25)/5.50

EPSI(4) > 1.0 - 0.625*\$za2

関数によって指定した空間変化に従って、比誘電率 ε_r の値を領域の要素に設定します。空間的 分布関数の値は、各要素の重心における値として解釈されます。関数の値が $\varepsilon_r \le 0.0$ となる要 素がある場合、EStat はエラーメッセージを表示します。

注:異方性誘電率を持つ他の物質が存在する計算では、関数を使うことはできません。

EPSI RegNo TABLE [x,y,z,r] TabName

EPSI(5) = TABLE Z GradedDielectric.DAT

空間分布を表す表(table)を指定して、領域の節点における比誘電率の値 ε ,を設定します。要素の重心の位置(DUnitの単位による)が表補間ルーチンに渡されます。

表によって値が ε_r≤ 0.0となる要素がある場合、EStatはエラーメッセージを表示します。 注:異方性誘電率を持つ他の物質が存在する計算では、表を使うことはできません。

SIGMA RegNo > 関数

SIGMA(7) > $0.5 + 2.0^{(1.0)} - \cos(3.14156^{(x/15.0)})$

SIGMA(4) > 100.0 - $50^{\circ} \exp(((\frac{z}{10}) \land 2))$

関数によって指定した空間変化に従って、電気伝導率の値を領域の要素に設定します。空間的 分布関数の値は、各要素の重心における値として解釈されます。電気伝導率の単位は S/m で指 定します。

関数の値が *σ*< 0.0 となる要素があるときに、EStat はエラーメッセージを表示します。 注:異方性電気伝導率を持つ他の物質が存在する計算では、関数を使うことはできません。

SIGMA RegNo TABLE [x,y,z,r] TabName

SIGMA(5) = TABLE X SwitchBreakdown.DAT

空間分布を表す表(table)を指定して、領域の節点における導電率の値 σ を設定します。要素の重 心の位置(DUnitの単位による)が表補間ルーチンに渡されます。 σ の値の単位はS/mとなります。 表によって値が $\sigma < 0.0$ となる要素がある場合、EStat はエラーメッセージを表示します。 注:異方性導電率を持つ他の物質が存在する計算では、表を使うことはできません。

RHO RegNo > 関数

RHO(5) > 5.235E-6 + 4.33E-6 *(\$x/2.3E-6)

関数によって指定した空間変化に従って、空間電荷密度の値を領域の要素に設定します。空間 的分布関数の値は、各要素の重心における値として解釈されます。空間電荷密度の単位は C/m³ で指定します。

RHO RegNo TABLE [x,y,z,r] TabName

RHO(2) = TABLE Y PulsedBeam.DAT

表によって指定した空間変化に従って、空間電荷密度の値を領域の要素に設定します。空間的 分布の表の値は、各要素の重心における値として解釈されます。空間電荷密度の単位は C/m³ で指定します。

4.2 関数の構文規則と表のフォーマット

EStat は、柔軟で強力な代数関数インタープリタ(解釈プログラム)を持っています。関数 は(英数文字 230 字までの)文字列からなり、次の構成要素を含みます。

- 空間変数:直交座標解析では(\$x, \$y)、円筒座標解析では(\$z, \$r)
- 任意の有効なフォーマットで表された実数および整数(例、3,1415、476、1.367E23、
 6.25E-02、8.92E+04、・・・) 整数は解釈の際に実数に変換されます。
- 2 項演算子:+(加算)、-(減算)、*(乗算)、/(除算)および∧(べき乗算)
- 関数:abs(絶対値)、sin(正弦)、cos(余弦)、tan(正接)、ln(自然対数)、log(10
 を底とする常用対数)、exp(自然指数)、および sqt(平方根)
- 20 組までの、任意の深さまでの括弧
- 任意の数の区切り記号

パーサ(構文解析プログラム)は、標準的な代数規則に従って、包括的なエラーチェック を行います。エラーには、左右括弧の不一致、未知の文字、および連続した 2 項演算子があり ます。有効な例を例示すると、表式

 $1 \exp(-1.0^*((\frac{z^2}{2} + \frac{r^2}{2})/24))$

は、

$$1 - \exp\left[-\left(\frac{z^2 + r^2}{24}\right)\right]. \tag{22}$$

に対応します。

表(table)は次のようなフォーマットのデータ行が含まれるテキストファイルです。

IndVar DepVar

最後の行には「EndFile」コマンドが書かれている必要があります。 独立変数(IndVar)はDUnit で設定された単位の*x、y、z、r*です。 すなわち、もしメッシュの寸法がセンチ単位で表されて いた場合、独立変数も同じ単位で表されていなければなりません。 独立変数の間隔は一定値 である必要はありません。つまり、変化の大きい所では間隔を短くすることもできます。 従 属変数(DepVar)は、ポテンシャル(V)、比誘電率、導電率(S/m)、空間電荷密度(C/m³)などです。 表の各項目は、有効な浮動小数点表示であればどのような形で記述することも可能であり、ま た、3.1節で述べた区切り記号のいずれでも区切ることが可能です。

アスタリスク「*」で行を始めることによってコメントを記述することも可能です。また「EndFile」 コマンドの後にはどのような形のテキストも記入できます。

表の補間方法は、「Interp」コマンドによって、線形もしくは三次スプライン補間で行うこ ともできます。デフォルトでは「Spline」が選択されます。三次スプラインを利用するには、関 数とその導関数が連続的な値を持った良いデータセットであることが必要です。データにノイ ズが多い場合や、不連続なデータの場合は「Linear」オプションを使います。補間ルーチンは、 独立変数の値が範囲外になった場合は、0を返します。

39

図12 例題ファイル「CHARGEFUNC」の幾何形状の要素表示。寸法の単位は cm。

4.3 ベンチマーク例題

「CHARGEFUNC」の例題(図12)は、空間電荷密度の連続的な変化を設定する方法を示 しています。手計算による解析解と比較できるように、簡単な幾何形状を選びました。半径 R_0 =2.0cmの接地した金属球の内部に分布する対称的な電荷密度 $\rho(R)$ により生成された静電ポ テンシャルを計算で求めます。この場合、ポテンシャルは Poisson 方程式により決まります。

$$\frac{1}{R^2} \frac{d}{dR} R^2 \frac{d\phi}{dR} = -\frac{\rho(R)}{\epsilon_0}.$$
(23)

空間電荷密度が一様な値 ρ_0 であるとき、(23)式の解は、球の中心におけるポテンシャルとして、 $\phi_0 = \rho_0 R_0^2 / 6 \varepsilon_0 を与えます。 \rho_0 = 1.0 \times 10^{-6} \text{ C/m}^3$ 、 $R_0 = 0.02 \text{ m}$ であるとき、ポテンシャル の値は $\phi_0 = 7.529 \text{ V}$ です。空間電荷密度の半径による変化が

$$\rho(R) = \rho_0 \left[1 - \left(\frac{R}{R_0}\right)^2 \right], \qquad (24)$$

であるとき、球の中心におけるポテンシャルは、 $\phi_0 = (\rho_0 R_0^2 / \epsilon_0) (1/6 - 1/20) = 5.271$ V となります。

図 12 は、円筒座標において数値解析するときの幾何形状です。要素サイズは約 0.05 cm で す。領域(region) 1 は解析空間を満たす $\varepsilon_r = 1.0$ の誘電体であり、領域 2 は固定ポテンシャル $\phi = 0.0 \text{ V}$ を持つ境界上の節点の集まりです。 一様な空間電荷密度 $\rho_0 = 1.0 \times 10^{-6} \text{ C/m}^3$ を EStat のスクリプトにおけるデータとして入力するときには、

Rho(1) = 1.0000E - 06

と表します。

図 13 における赤色の曲線は、空間電荷蜜度が一様なときに計算したポテンシャルの半径方向の 変化を示しています。中心におけるポテンシャルは Ø₀ = 7.541 V で、理論値と 0.16%以内で一 致しています。 式 24 に示した半径とともに変化する空間電荷密度の場合を EStat で計算する には、一様な場合の式を、

 $Rho(1) > 1.0E - 6^{*}(1.0 - 0.25^{*}(\$r^{2} + \$z^{2}))$

と書き換えます。この結果得られる ϕ の半径方向の変化をプロットすると、図 13 の青色の曲線になります。中心におけるポテンシャルは ϕ_0 = 5.280 V となり、理論値と 0.17%以内で一致します。

図 14 例題「CHARGEFUNC」における $\rho(r, z)$ の要素プロット図

EStat のプロット機能と解析(Analysis)機能を用いて、関数式の妥当性をチェックできます。 プログラムは ϕ 、 ε_r 、 σ 、 ρ の空間的変化を表示できます。図 14 は $\rho(r, z)$ の要素プロット図 です。このプロットから、球の中心(z = 0.0, r = 0.0)においては $\rho(r, z) = 1.0 \times 10^{-6}$ であり、 中心から *R* とともに放物線的に変化していくことが分かります。

量	単位			
空間的寸法	m(メートル)または DUnit で設定した単位			
ポテンシャルの大きさ	V (ボルト)			
電場	V/m(ボルト/メートル)			
空間電荷密度	C/m^3 (クーロン/立方メートル)			
電流密度	A/m ² (アンペア/平方メートル)			
エネルギー密度	J/m^3 (ジュール/立方メートル)			
電力密度	W/m ³ (ワット/立方メートル)			

表 6 EStat の標準単位

第5章 計算結果の分析

プロット図を作成したり、数値的な分析を行ったりするには、EStat のメインメニューで Analyze コマンドをクリックし、データファイルを選んでください。分析ルーチンは、計算が 誘電型(dielectric)であるか導電型(conductive)であるかにより、ラベルと計算量を自動的に調整 します。表6に静電解析に用いる標準的な単位をリスト表示します。

メニュー項目は、「File」、「Plots」、「Analysis」、「Scans」、「Export」、および「Return」で す。印刷やプロットファイル生成を行う「Export」メニューのコマンドは、Mesh の場合と同 じです。Return コマンドは、追加の計算を行うためにメインメニューに戻る場合に使います。

5.1 「FILE」メニューのコマンド

LOAD SOLUTION FILE

メインメニューに戻ることなく、別の解析結果ファイルを読み込みます。ダイアログで新たな ファイル FPrefix.EOU を選んでください。ダイアログでディレクトリを変えると、プログラム の作業ディレクトリも変わります。

OPEN DATA RECORD

「Point calculation」および「Line scan」などのコマンドは定量的な情報を生成します。デー

タ記録ファイルを開くことにより、これらの解析セッションの間に生成したデータを自動的に 記録できます。ダイアログでファイル名(拡張子不要)を入力するか、デフォルトで表示されるフ ァイル名を受け入れてください。データファイルは、ファイル名.DAT という形式の名前を持ち、 作業ディレクトリに保存されます。このファイルはテキストフォーマットです。このファイル はテキストエディタを用いて内容を見たり、数学的な分析ソフトや表計算ソフトに送るために 情報を抽出したりすることができます。

CLOSE DATA RECORD

開いているデータ記録ファイルを閉じます。新たな記録ファイルで作業を始めたいときは、こ のコマンドを用いてください。内部エディタを用いて新たなファイルを開く前に、データ記録 ファイルを閉じる必要があることに留意してください。

RUN SCRIPT

スクリプトを用いることによって、一連の同じような計算結果に対して、複雑な分析や反復的 な分析を行うことができます。このコマンドは、拡張子「.SCR」の付いたファイルをリストし たダイアログを表示します。ファイルを指定し、OK ボタンをクリックしてください。スクリプ トは、データファイルのロード、データ記録ファイルを開閉、そして本章で述べる定量的解析 機能のどれでも実行できます。スクリプトコマンドの言語については、5.5 節で説明します。分 析スクリプトはデータファイルと同じディレクトリになければならないことに留意してくださ い。

CREAT SCRIPT

内部テキストエディタにより分析スクリプトを作成するにはこのコマンドを用います。ダイア ログで、拡張子を除くファイル名(SPrefix)を入力してください。作成したスクリプトは、 SPrefix.SCR という名前で保存されることになります。 プログラムは内部エディタでファイル を開き、そこに参照用に使用可能なコマンドのリストを書き出します。このリストは EndFile コマンドの下に書き出されますので、スクリプトパーサ(構文解析プログラム)により無視さ れます。実際の分析コマンドは EndFile コマンドより前に入力してください。

EDIT SCRIPT

EDIT DATA FILE

EDIT FILES

すでに作成したファイルを閲覧したり、修正したりするにはこれらのコマンドを用います。ダ

イアログは、Edit script コマンドの場合には拡張子「.SCR」の付いたファイルを、Edit data file コマンドの場合には拡張子「DAT」の付いたファイルを表示します。ダイアログの中でディレ クトリを変えても、作業ディレクトリは変わりません。

5.2 PLOTS メニューのコマンド

空間プロット図は、シミュレーションの 2 次元空間における物理量の分布を示します。次のプ ロットタイプ(plot type)が可能です。

- Mesh 計算メッシュの要素ファセット(輪郭)。
- Region 領域番号により要素を色分した計算メッシュ。
- Contour 計算した物理量の同一の値を持つ点を結んだ等高線図。
 静電解析では、ポテンシャルφの等高線は電気力線に垂直となります。等高線の間隔は、
 電場の強さに反比例します。電場の大きさは、一般に空間の連続関数ではありませんので、
 |E|の等高線図は、いくつかの線が圧縮された領域ができることがあります。
- Element (電場の大きさなど)計算した物理量の大きさにより要素を色分けした解析空間のプロット。
- Vector ベクトル量の局所的な方向を示す方向線を、各要素毎に表示した要素(element) プロット。
- Surface 計算した量を高さで表した、 *x-y*または *z-r*面上の3次元プロット。プロット 図の空間的範囲は、Mesh、Region、Contour、Element、または Vector のプロット図の、 その時のビューウィンドウの範囲に対応します。大きなメッシュでは、Surface プロット の作成に時間がかかることがあります。プログラムが処理している物理量を格子上にマッ ピングするため、多数の補間を行う必要があるためです。

「Plot Settings」メニューには、次のコマンドがあります。

PLOT TYPE

プロットタイプを上で述べたリストから選びます。プロットタイプは、すでにプロットされて いる物理量に必ずしも対応しないことがあります。たとえば、静電ポテンシャルのベクトルプ ロットは定義できません。プロットタイプを切り替えたときに、問題とする量がプロットでき ませんというメッセージが現れたなら、「Plot quantity」コマンドを用いて、有効な選択肢を選 んでください。

PLOT QUANTITY

ダイアログは、現在のプロットタイプに対応する使用可能な量のリストを示します(表 7)。電 流および電力密度などの量は、誘電型解析では定義されていないことに留意してください。 Mesh および Region プロットの場合、このリストは空白です。

プロットタイプ	量
Contour (等高線)	静電ポテンシャル ø
	電場の大きさ E
	電流密度の大きさ j
	抵抗電力密度 P
	比誘電率または電気伝導率 ε_r 、 σ
	空間電荷密度 p
Element (要素)	静電ポテンシャル ø
	電場の大きさ E
	電流密度の大きさ j
	抵抗電力密度 P
	比誘電率または電気伝導率 ε_r 、 σ
	空間電荷密度 p
Vector (ベクトル)	電場 E
	電流密度 j
Surface (面)	静電ポテンシャル Ø
	電場の大きさ E
	電流密度の大きさ j
	抵抗電力密度 P
	水平方向の電場 E_x または E_z
	垂直方向の電場 E_y または E_r
	水平方向の電流密度 j_x または j_z
	垂直方向の電流密度 j_r または j_r
	比誘電率または電気伝導率 $\varepsilon_{\rm r}$ 、 σ
	空間電荷密度 p

表7 有効なプロット量

PLOT LIMITS

Contour、Element、Vector、Surface のプロット図において、デフォルトのオートスケール(自動目盛割り当て)モードでは、物理量の値のプロット範囲は、全レンジとなっています。この コマンドを用いると、プロットする値の範囲を設定できます。ダイアログにおける「AutoScale」 ボックスのチェックを外し、プロット範囲の最小値(Minimum value)と最大値(Maximum value)を入力してください。 入力した値の物理的な妥当性を、プログラムがチェックすること はありません。この操作は、他のプロット量のスケーリングに影響しません。オートスケール モードに戻るには、AutoScale チェックボックスにチェックを入れてください。

TOGGLE GRID DISPLAY

Mesh、Region、Contour、Element、Vector のプロット図において、グリッド(格子線)の表示・ 非表示を切り替えるとき、このコマンドを用います。座標軸 (x=0.0または y=0.0) に対応する 格子線は、実線として表示されます。

GRID CONTROL

このコマンドは、グリッド(格子線)の設定をするダイアログ(図 15)を表示させます。デフォ ルトの自動スケールモードにおいては、グリッドの座標位置が x または y の都合のよい値にな るように(たとえば、0.01153 ではなく 0.01 というように)、グリッドの間隔と位置を自動的 設定されます。グリッドの間隔は、ビュー(視野)の縮小/拡大とともに変わります。グリッド を手動で設定するには、「Automatic intervals」ボックスのチェックを外し、x および y 方向の 間隔の値(XGrid および YGrid)を入力してください。

📴 Grid control	×
I⊽ Display grid	ОК
	Cancel
Automatic intervals	
≍Grid	
2.50CE-01	
YGrid	
2.50CE-01	

図 15 グリッド設定ダイアログ

MOUSE/KEYBOARD

ラインスキャン(Line scan)やズーム(Zoom window)などのコマンドに必要な座標入力に、デフ オルトではマウスを用いた対話的な入力を用いるようになっています。このコマンドは、マウ ス入力とキーボード入力の切り替えをプログラムに指示します。キーボードから座標を入力す るときには、Mesh で用いた距離の単位を用いてください。例えば、計算プログラム(EStat)にお いて DUnit = 1.0×10⁶ であるときは、寸法をミクロンの単位で入力してください。

TOGGLE SNAP MODE

スナップモード(snap mode)であるとき、マウスで指定した点の座標値は、DSnap の値の整数 倍の値で、その点に最も近い値になります。たとえば、DSnap=0.5 であり、マウスの位置が [5.4331, -2.6253]であるとき、マウスで指定して得られる座標値(戻り値)は[5.500、-2.500] となります。デフォルトでは、スナップモードが ON になっています。「Point calculation」 や「Element properties」のようなコマンドでの座標入力においては、自動的にスナップモード は OFF になります。OFF にしておかないと、マウスの矢印の先端が指定する点ではなく、その 点に最も近いスナップモードで決まる点の座標値を指定することになり、プログラムは誤った 情報を与えることになるからです。

SNAP DISTANCE

マウス入力におけるスナップモードの距離スケール DSnap を設定します。

TOGGLE ELEMENT OUTLINE

Element と Vector のプロット図に要素境界(ファセット)を表示するか、しないかの切り替え を行います。多数のメッシュからなるビューを見やすくするには、要素境界を表す輪郭線は表 示しないことが必要でしょう。

TOGGLE FIXED POINT DISPLAY

デフォルトのモードにおいては、EStat は要素情報を用いて、等高線(Contour)、要素(Element)、 およびベクトル (Vector) プロットを作成します。したがって、(固定ポテンシャルグリッドま たはシートのような構造を表す) 孤立節点は表示されません。このコマンドに応じて、プログ ラムは物質の要素に囲まれた固定ポテンシャルの節点の円をプロットします。

CONTOUR STYLE

このコマンドは、プロットタイプが Contour であるときのみ有効です。単色(モノクロ)、ラベ ル付き単色、多色、ラベル付き多色の 4 つの表示が選択できます。多色モードにおいては、等 高線はプロットされる量に応じて色分けされます。色分けの凡例が、プロット図右の情報ウィ ンドウに示されます。ラベル付き多色モードでは、プロットされる量の値が等高線に表示され ます(図 16)。等高線が近接してラベルが重なり合うときには、ビューを拡大すると見やすくな ります。

図16 ラベル付き単色等高線プロット

NUMBER OF CONTOURS

プロットする等高線の数を変えることができます。このコマンドは、プロットタイプが Contour であるときのみ有効です。

次のコマンドは Mesh マニュアル(mesh.pdf)において説明されていますが、Mesh、Region、 Contour、Element、Vector のプロットにおいてビューの範囲を変えます。2 次元プロットの現 在のビューの範囲は、3 次元 Surface プロットを作成するときのビューの範囲となります。

ZOOM WINDOW ZOOM IN EXPAND VIEW GLOBAL VIEW

PAN

次のコマンドは、Surface プロットの見え方を制御します。これらのコマンドは、Surface プロットが表示されているときのみ有効です。

FLIP 3D IMAGE

Surface プロットを、空間の平面内で 90°回転します。

VIEW ANGLE 3D

視点の仰角を設定します。

SET GRID 3D

表面プロット図の解像度を変えます。surface プロットを作成するときに、プロットする量 が大きさ $N_x \times N_y$ の格子にマッピング(写像)されます。また、これらの数により、Surface プロットの格子線の合計数が決まります。デフォルト値は $N_x = N_y = 40$ です。

5.3 ANALYSIS メニューのコマンド

「ANALYSIS」(分析)メニューにおけるコマンドは数値データを生成します。ほとんどの機能は座標入力を必要とし、通常はマウスにより入力します。ANALYSIS メニューは、Mesh、 Region、Contour、Element、Vector のプロットを表示しているときにのみ有効です。

POINT CALCULATION

EStat は、物質境界での不連続性を保持する高度な補間法を取り入れており、誘電体境界 の両側における電場の値を正しく計算することができます。このコマンドをクリックし、任 意の位置を指定します。(座標を入力するときには、スナップモードが使えないことに注意 してください。)プログラムは、補間した量の値の一覧をプロットの下の実線枠内に表示し、 またデータ記録ファイルが開いているときには、完全な情報を記録します。キーボードによ り座標を入力するときには、「Mouse/keyboard」コマンドを用いてください。

LINE SCAN

ラインスキャンは EStat の最も便利な機能の一つです。このコマンドをクリックし、Mesh、

Region、Contour、Element、Vector プロットの中の2点をマウスで指定して、スキャンする 線を指定してください。この操作にはスナップモードが有用です(たとえば、0.067から4.985 までを指定するよりは、0.000から5.000までを指定してスキャンしたいことでしょう)。プ ログラムは、このスキャン線に沿って等間隔に電場の量を計算します。データ記録ファイルが 開いているとき、この情報が記録されます。また、プログラムは、スキャン線に沿った距離に 対する現在選択した物理量のプロットを作成し、「SCAN」メニューのコマンドが使えるように します(5.4節)。

ELEMENT PROPERTIES

マウス(またはキーボード)により要素を指定してください。指定に応じて、EStat 内蔵ポスト プロセッサはその要素の物質と電場特性を画面に表示します。データ記録ファイルが開いてい るときは、その情報が記録されます。

REGION PROPERTIES

解析空間内の任意の領域(region)に関する物理的特性を見出すときには、その領域(region)内の 任意の点でマウスをクリックしてください。解析結果の一部が画面に表示され、また完全な解 析結果がデータ記録ファイルに記録されます。EStat は、電場のエネルギー密度と電力密度の体 積積分を、指定した領域(region)にわたり計算します。

EStat は「Region properties」コマンドに応じて、次の線積分を領域(region)境界の周囲で 計算します。

● 電極上の誘導電荷を求めるための表面電荷密度の積分。

この計算は、有限の体積を持つ固定ポテンシャルの充填(Filled)領域表面上において のみ行われます。表面上の自由電荷密度は、 $\sigma_{\text{free}} = \varepsilon_0 \varepsilon_r E_\perp (C/m^2)$ です。ここで、 E_\perp は電極のすぐ外側における電場の垂直成分です。表面における全電荷密度は、 $\sigma_{\text{tot}} = \varepsilon_0 E_\perp$ です。EStat は領域(region)境界上にあるすべての要素境界を特定します。プログ ラムは各境界のセグメント(線分構成要素)に対し、隣接する要素における電場の垂直 成分を計算し、その結果に表面積を乗じます。直交座標解析のときには C/m 単位、円 筒座標解析のときには C 単位で結果が得られます。鋭角を持つ電極に対しては、この処 理が不正確になることに留意してください。この場合、線積分を用いるには、電極の周 囲でガウス表面を定義するほうが良いでしょう。

- 導電型(conductive)シミュレーションにおいて電極に流れる全電流を求めるための電流 密度の積分。
 この計算は、計算する量が j_⊥ = σE_⊥という点を除くと、誘導電荷の計算のときと同じ 方法を用います。平面解析での結果は A/m 単位であり、円筒座標解析では A 単位です。
- 力の成分を求めるための、領域(region)境界周囲での Maxwell の応力テンソルの積分。 この結果は、その領域(region)が真空/空気要素(ε_r = 1.0) で囲まれているときのみ有 効です。その領域が誘電体または電極で囲まれているときには、分析スクリプトの 「FORCE」コマンド(5.5節)を用いて、それらの集まりに作用する正味の力を求める ことができます。

データ記録ファイルが開いているとき、EStat は領域(region)境界面を構成するファセット (要素の境界)上の電場の値を、順番にリストに書き出します。このようなリスト表示は、高 電圧装置を設計するときに有用になります。以下は、領域境界面のリストの例です。

X	Y	D	E	Ex	Ey	NBorder
-1.7709E+00	1.0009E+00	0.0000E+00	3.8431E+06	-1.6070E+05	-3.8397E+06	3 1
-1.8150E+00	1.0048E+00	4.4245E-02	4.0071E+06	-5.2130E+05	-3.9730E+06	5 1
-1.8616E+00	1.0132E+00	9.1649E-02	4.1001E+06	-9.1630E+05	-3.9964E+06	5 1
-1.9025E+00	1.0242E+00	1.3400E-01	4.3106E+06	-1.3157E+06	-4.1049E+06	5 1
-1.9415E+00	1.0387E+00	1.7565E-01	4.2288E+06	-1.6218E+06	-3.9055E+06	5 1
-1.9826E+00	1.0580E+00	2.2100E-01	4.2118E+06	-1.9614E+06	-3.7272E+06	5 1

データ項目は、ファセットの中点の座標、および対象領域(target region)に隣接する要素に おいて計算した|E|、 E_x および E_y (または E_z および E_r)の対応値です。つまり、対象領域が電極 のとき、隣接する誘電体について計算が行われます。パラメータ「NBorder」は、隣接要素の 領域番号です。このルーチンは、誘電体間の境界についても機能します。2つの物質の領域分析 をすることにより、誘電体界面の両側における電場の値を求めることができます。この機能は、 真空絶縁体のストレスを調べるときに有用です。

EStat は連続表面における順序でファセットを配置することに注意してください。1 番始め のファセットは、(直交座標解析では)x軸、または(円筒座標解析では)z軸に最も近い中点 をもつファセットです。領域表面が閉じていて、解析領域の境界上にないとき、このリストは1 周して始めの点に戻ります。量「D」は始点からの表面距離です。すべての座標と距離は DUnit で設定した単位で与えられます。領域表面が閉じていないか、領域が解析領域境界と交差する ときに、順序は完全でないことがあります。

LINE INTEGRAL

このコマンドに対する入力は、Line scan コマンドの場合と同じです。2 点を入力して直線を 定義してください。EStat は静電容量と抵抗の計算のための線積分を行います。

線積分に関して、直交座標の誘電体のシミュレーションにおけるガウスの法則は、次の式で 表せます。

$$\oint dl \ \epsilon_o \epsilon_r E_\perp = q_{free},$$

$$\oint dl \ \epsilon_o E_\perp = q_{tot}.$$
(25)

積分は x-y 面内の閉じた積分路で行います。 E_{\perp} は積分路に垂直な電場成分で、閉領域の外側に向いています。 q_{free} は積分路に囲まれた 1m あたりの自由電荷で、 q_{tot} は積分路に囲まれた全電荷(自由電荷+誘電体の分極電荷)です。円筒座標系の誘電体のシミュレーションにおけるガウスの法則は、次の式で表せます。

$$\oint dl \ 2\pi r \ \epsilon_o \epsilon_r E_\perp = Q_{free},$$

$$\oint dl \ 2\pi r \ \epsilon_o E_\perp = Q_{tot}.$$
(26)

閉じた積分路はr-z面内にあり、 Q_{free} は積分路に囲まれた電荷です。

EStat は誘電解析に対し、幾何形状が直交座標であるか円筒座標であるかに応じて、次の 線積分を計算します。

$$\int dl \ \epsilon_o \epsilon_r E_{\perp},$$

$$\int dl \ \epsilon_o E_{\perp},$$

$$\int dl \ 2\pi r \ \epsilon_o \epsilon_r E_{\perp},$$

$$\int dl \ 2\pi r \ \epsilon_o E_{\perp},$$
(27)

複数の線積分で全電荷を囲むか、解析の対称性を利用することによって、電極上での全電荷を 求めることができます。複数の積分を用いるときは、時計回りの方向に積分領域を囲むように してください。

また、EStat は線積分路に沿って Maxwell の応力テンソルを計算します。対象物体を囲む 線積分からの寄与を総和して、全静電力を求めることができます。線積分路が電極または誘電 体領域 ($\varepsilon_r \neq 1.0$)を通らないときにのみ、その結果が有効であることに注意してください。

導電型解析に対しては、直線により定義された面を通る 1m あたりの電流(直交座標のとき)、 または電流(円筒座標のとき)は、それぞれ次の積分により与えられます。

$$\int dl \ \sigma E_{\perp},$$

$$\int dl \ 2\pi r \ \sigma E_{\perp}.$$
(28)

VOLUME INTEGRAL

このコマンドには、特に入力は必要はありません。EStat は、全解析領域および各領域 (region)にわたる積分を自動的に計算します。 情報は画面上またはデータ記録ファイルに記 録されます。このコマンドでは次の解析を実行します。

- 1. 静電場エネルギー密度 $u = \varepsilon_0 \varepsilon_r E^2/2 \epsilon$ 、誘電型解析の全領域および各領域(region)にわたり体積積分します。出力の単位は、直交座標では J/m、円筒座標では J です。
- 2. 電力損失(ワット損) $p = \sigma E^2/2$ を、導電型解析の全領域および各領域(region)にわたり 体積積分します。解析の出力単位は、直交座標では W/m、円筒座標では W です。
- 3. 解析空間および各領域(region)における最大電場の位置と値。

MATRIX FILE

EStat は、ユーザーが他のソフトを利用/作成して計算結果データを解析する際に役に立つ、電 場の値のマトリックスファイルを作成できます。計算結果の情報は EStat の出力ファイルから 利用可能ですが、通常、3 角形メッシュ上のデータを処理することは難しいでしょう。「Matrix file」コマンドは、プログラムの補間機能を用いて、*x-y*または *z-r*空間内の直交格子上における 電場の値のテキストデータファイルを作成します。このコマンドのダイアログは、マトリック スファイルの拡張子を除くファイル名(FPrefix)、ボックス(出力領域)の大きさ、*x*および *y*方向 (または z および r 方向)の区間数の入力を求めます。プログラムは、現在作業中のディレクト リに、Fprefix(ファイル名).MTX という形の名前のファイルを作成します。

「Analysis settings」メニューには次の項目があります。

INTERPOLATION METHOD

Point calculation および Line scan コマンドにおけるデフォルトの補間法は、インテリジェントにデータ点を収集する 2 次の最小二乗法適合です。たとえば、境界における電場の不連続性を正しく与えるために、対象とする点を含む誘電体境界側の点のみを計算に取り入れます。プログラムが十分にデータ点を識別できないと、非常に小さな領域または閉じた領域においては、最小二乗適合が機能しなくなることがあります。この場合、線形モードに切り替えてください。このモードでは、対象とする点を含む要素において、電場の値が1次補間により決定されます。ステータスバーは、現在用いている補間法を通知します。

SCAN PLOT QUANTITY

このコマンドにより、ラインスキャン(Line scan)する量を選択して、画面およびハードコピー(印刷)のプロットに表示させることができます。リストボックスから表示する量を選択し、OK ボ タンをクリックしてください。なお、データ記録ファイルは、すべての場の量が記録されるの で、この設定は、影響を与えることはありません。どのラインスキャン量が有効かは、解析タ イプにより異なります。ラインスキャン量として選択できるのは、静電ポテンシャル(ϕ)、 電場の大きさ($|\mathbf{E}|$)、電場の水平成分(E_x または E_z)、電場の垂直成分(E_y または E_p)、電流 密度の大きさ($|\mathbf{j}|$)、電流密度の水平成分(j_x または j_z)、電流密度の垂直成分(j_y または j_r)、 および電力密度(σE^2)です。最後の4つの量は、導電型解析においてのみ有効です。

NUMBER OF SCAN POINTS

画面プロットおよびデータ記録ファイルに出力されるラインスキャン点の総数を設定するコマ ンドです。デフォルトで選択されている数は 50 で、最大数は 500 です。

SET RECORDED QUANTITIES

ラインスキャン(Line scan)とマトリックスファイル(Matrix file)でデータ記録ファイルに保存さ れるのは、デフォルトではすべてのプロット量ですが、ユーザーにとって不必要な情報により ファイルサイズが大きくなります。このコマンドを用いることにより、必要な量のみ記録する ように指定できます。なお以下のルールがあります。

- ●物理量の指定は、プログラムが一つのウィンドウでインタラクティブ(対話型)モードで動いているときのみ可能です。プログラムがバックグラウンドで動いている場合は使えません。
- インタラクティブモードでは、物理量の指定はLine scanおよびMatrix fileコマンドへは 直接呼び出しですが、分析スクリプトからは間接呼び出しとなります。
- すべてのプロット量はプログラムが実行開始したときからアクティブです。
- アクティブなプロット量の状態は、新しいデータファイルが読み込まれた際も保持されています。

5.4 SCANS メニューのコマンド

SCANS メニューのコマンドは、Line scan コマンドによってスキャンプロットを作成した ときに使用可能になります。

OSCILLOSCOPE MODE

このオシロスコープモード(Oscilloscope mode)では、スキャンプロットはデジタル・オシロス コープの方式を取り入れています(図 17)。プログラムは、グラフ上に十字線のパターンを表 示します。十字線が交差する点の位置におけるプロットの値が情報ウィンドウに表示されます。 マウスにより十字線パターンのマーカをプロット線に沿って動かしてください。プロット線上 の任意の位置でマウスの左ボタンをクリックすると、その位置での曲線の微分係数および積分 の数値とともにプロット値を表示します。定積分は、プロット図の左側から現在の点まで行い ます。これらの値は画面上に表示され、データ記録ファイルが開いているとき、データが書き 込まれます。オシロスコープモードを抜け出るためには、マウスの右ボタンを押してください。

図 17 オシロスコープモードにおけるスキャンプロット図

TOGGLE SCAN SYMBOLS

スキャンプロット図に、計算した点を示すプロットシンボルを表示するか否かを決める設定で す。

TOGGLE GRID

画面およびハードコピー(印刷)のスキャンプロット図に格子線を表示するか否かを決める設定 です。

CLOSE SCAN PLOT

EStat の FILE、PLOTS、ANALYSIS メニューを利用するには、スキャンプロット図を閉じる必要があります。このコマンドはスキャンプロット図を閉じ、以前に表示していたプロット図に プログラムを戻します。

5.5 分析スクリプトのコマンド

分析(analysis)セッションを制御するスクリプトファイルは、FPrefix.SCR という形の名前 を持ちます。このファイルは、データファイルと同じディレクトリになければなりません。ス クリプトは TriComp の構文仕様に従うテキストファイルです。プログラムは空白行と字下げを 無視します。データ行は標準の区切り記号を用いて記述され、コメント行はアステリスク「*」 で始まります。プログラムは「Endfile」コマンドに出会うと処理を終了します。

スクリプトを実行するには、「FILE」メニューの「Run script」コマンドを選んでくださ い。プログラムは、利用可能なスクリプトのリストを示します。ファイルを指定して OK ボタ ンをクリックしてください。スクリプトは現在読み込んでいるデータファイルに対して処理を 行いますが、スクリプトの中から他のファイルを読み込むこともできます。1 つ以上のデータフ ァイルを順次開くこともできます。

コマンドプロンプトから、スクリプトファイルの制御のもとで、自律的な分析を EStat に 行わせることができます。ファイル「GTest.SCR」がデータディレクトリにあるとき、

[プログラムディレクトリ]¥ESTAT GTEST <Enter>

という形式のコマンドを用いてください。コマンドプロンプトモードの主な利用方法は、デー タファイルを作成や、バッチファイル制御のもとで長時間にわたる解析を行うことです。

以下のコマンドがスクリプトに現れます。

INPUT FileName

INPUT Switch1.EOU

現在開いているデータファイルを閉じ、分析するためのファイルを読み込みます。パラメータ はデータファイルのフルネーム (ファイル名+拡張子)です。例示した上記のコマンドにより、 ポストプロセッサーはファイル SWitch1.EOU を読み込みます。分析のため、順次いくつかのフ ァイルを読み込むことができます。

OUTPUT FPrefix

OUTPUT SW02

現在開いているデータファイルを閉じ、FRrefix.DAT の形のファイル名を持つデータ記録ファ イル(例では「SW02.DAT」)を開きます。

POINT X Y

POINT Z R

POINT = (5.65, 10.68)

指定した点において補間を行い、その結果をデータ記録ファイルに書き込みます。2つの実数パ ラメータは Mesh の単位で表した点の座標です。

SCAN Xs Ys Xe Ye

SCAN Zs Rs Ze Re

SCAN = (0.00, 0.00) (10.00, 0.00)

指定した点の間で行ったラインスキャンの結果をデータ記録ファイルに書き込みます。4つの実 数パラメータは、Meshの単位で表した始点と終点の座標です。

INTERPOLATION [LSQ, LINEAR]

INTERPOLATION = Linear

Point、Line scan、Matrix コマンドにで使用する補間法を指定します。オプションは「LSQ」 (least-square fit: 最小二乗法)および「Linear」(線形)です。

ELEMENT X Y

ELEMENT Z R

ELEMENT = (5.65, 10.68)

指定した点における要素特性をデータ記録ファイルに書き込みます。2 つの実数パラメータは Mesh の単位で表した点の座標です。

NSCAN NScan

NSCAN = 150

ラインスキャンにおけるプロット点の総数を設定します。デフォルト値は 50、最大数は 500 で す。

REGION RegNo

REGION = 5

ある region(領域)に対する体積積分および面積分をデータ記録ファイルに書き込みます。整数パ ラメータは領域(region)番号です。 LINEINT Xs Ys Xe Ye

LINEINT Zs Rs Ze Re

LINEINT = (0.00, 0.00) (10.00, 0.00)

スキャン線に沿って行った線積分をデータ記録ファイルに書き込みます。4つの実数パラメータは、Meshの単位で表した始点と終点の座標です。

VOLUMEINT

全解析領域および各領域(region)に対する体積積分をデータ記録ファイルに書き込みます。

MATRIX FPrefix Nx Ny Xs Ys Xe Ye

MATRIX FPrefix Nz Nr Zs Rs Ze Re

MATRIX = Switch1 (10, 20) (0.00, 0.00, 5.00, 10.00)

マトリックスファイルを作成し、値を記録します。このコマンドには、次の 7 つのパラメータ が必要です。

- 1) マトリックスファイル FPrefix.MTX のプレフィックス(拡張子を除いたファイル名 FPrefix)、
- 2) x (または z) 方向における区間の数(整数)、
- 3) y (または r) 方向における区間の数(整数)、

4) 解析領域におけるボックス(データ書き出し対称領域)の対向する2角の点の座標(実数)。

FORCE Reg01 Reg02 Reg03 ...

FORCE = 2, 4, 5

1 つ以上の領域に作用する正味の静電気力を、Maxwell の応力テンソル積分を用いて計算しま す。これらの領域は、連続していることも、分離していることもあります。積分は次の 2 つの 例外を除いて、すべての領域(region)境界にわたり行われます。

- リスト中の領域(region)間の共有面
- 解析領域の境界上の面

この機能は、誘電体と電極が接続した組み立て部品に作用する正味の力を計算したいときに重要です。Maxwell の積分は真空 ($\varepsilon_r = 1.0$) に隣接する面にわたり行わなければなりません。 共有境界にわたる積分の結果は有効ではありません。

ENDFILE

スクリプトの実行を終了します。このコマンドの後には、どのような形の説明文を付け加える こともできます。

次の例は、4 つの異なる解析軸に沿った電場の値を比較し、その結果をファイル 「COMP.DAT」に書き込むスクリプトです。

NSCAN 200 OUTPUT COMP INPUT SWITCH01.EOU SCAN 0.00 -50.00 0.00 50.00

INPUT SWITCH02.EOU SCAN 0.00 -50.00 0.00 50.00 INPUT SWITCH03.EOU SCAN 0.00 -50.00 0.00 50.00 INPUT SWITCH04.EOU SCAN 0.00 -50.00 0.00 50.00 ENDFILE

5.6 電気力線プロッタ

EStat は、電気力線をプロットし、分析できる対話的な環境をもっています。このコマンド 「Field line plotter」(ANALYSIS メニュー内)は、表示されたプロットタイプが Contour また は Element であるときに使用可能です。このコマンドをクリックすると、座標入力モードが使 用可能になります。ここで、現在の座標モード設定(マウス/キーボード、スナップモード、・・・) を用いて、100 点までの点を指定します。プログラムは、その点から負方向と正方向に(点電荷 を)移動することにより、その点を通る電気力線を計算します。電気力線は、解析空間を出るか、 固定ポテンシャル物質の中に入ると、終端となります。EStat は、導体または境界と交差する点 を正確に見出すために、補間を行います。element(要素)プロットモードにおける電気力線の様 子を、図 18 に示します。電気力線の追加を終了するには、マウスの右ボタンをクリックしてく ださい。後でさらに電気力線を追加することもできます。その後プロットから現在表示されて いる電気力線を除去するには、「ANALYSIS」メニューの「Clear field line」コマンドを用い てください。

データ記録ファイルが開いていると下記の様に、EStat は電気力線を追加するごとに、その 電気力線に関する情報を記録します。リストされる量には、始点の位置および計算された電場 の量のほかに、負方向と正方向における終点の座標も含まれます。

```
Field line calculation
  Initiation point:
    z:
         4.4838E+00
         6.2142E+00
    r:
    Phi: -4.9444E+05
    Ez:
          2.9798E+06
    Er: -2.2680E+06
  End point (negative direction):
    Condition: Fixed potential region
    z:
         4.6154E+00
         9.4998E+00
    r:
  End point (negative direction):
    Condition: Fixed potential region
         4.5330E+00
    z:
         6.1789E+00
    r:
```


図18 対話的な電気力線プロッタを用いた真空絶縁体近傍における電場の分析

5.7 等高線ツール

ANALYSIS メニューの「Equiline tool」コマンドは、等ポテンシャル面に沿ったベクトルの集合を順番にリストしたファイルを作成します。EStat は、現在開いているデータ記録ファイ

実例を用いると、Equiline tool の方法と目的を最も良く説明することができます。接地箱 内で接地面と長い電極の間の安定なガス放電を必要とする CO₂パルスレーザを設計したいとし ます。電場の大きさの変化に関して、次のような2つの条件があります。1) |E|は電極間の空間 において近似的に一様であること、2) |E|は電極表面に沿って対称軸から離れるにしたがい単調 に減少すること。2つ目の条件は、非一様な放電またはスパークを回避するために必要です。 電極の外側エッジの半径が単純に同じ場合は、表面の電場を増大させます。Rogowskiの方法 [W. Rogowski, Arch. Elekt. 16, 73 (1926)] は、電極形状に関して多少の指針を与えますが、自由 空間における無限幅の電極に適用されるものです。したがって、直接、数値解法でアプローチ することにします。

接地面から高さ 1.5cm にある、幅 8.0cm の薄い板を発生電極としたときの最初の計算の結 果を図 19 に示します。系は x = 0.0 cm における y 軸に関して対称ですので、左端を Neumann 境界とする $x \ge 0.0$ の領域のみに限定して解析を済ますことができます。電極の電圧を 1.0V に したときの等電位線を図 19a に、|E|の等高線図を図 19b に示します。グレーの領域は、電場 の大きさがギャップ中央における大きさとほぼ等しい区域です。図 19b に赤い矢印で示した点 (4.00, 0.95)を通る等電位線を考えてみましょう。この等電位線は、左側はグレー領域の等電 界強度線の内側にとどまり、右側に向かっては、より低い等電界強度線の方に動いています。 したがって、等電位線に伴う表面電場は、電極に沿って第2の条件を満たします。

図 19 UNIFIELD01の初期解。a) 等電位線図。b) 等電界強度線図

Point calculation コマンドを用いると、その点のポテンシャルが 0.504V であることがわ かります。次に、Equiline tool を用いて電極表面に沿ったベクトルの集合を生成し、その結果 を UNIFIELD01.DAT に保存します。このファイルには、2 つのリストがあります。最初のリス トは、要素サイズと同程度のスケール長さで計算した 209 個のベクトルすべてが含まれるデー タです。

Potential:	5.0400E-01		
0.0000	3.1997	0.0002	3.1997
0.0002	3.1997	0.1124	3.1995
0.1124	3.1995	0.1128	3.1995
0.1128	3.1995	0.2151	3.1990
0.2151	3.1990	0.2161	3.1990
0.2161	3.1990	0.3167	3.1983

Full vector set along potential contour

ベクトルをすべて記録したリストは、コンピュータ制御フライス盤への入力データとして有用 です。2番目のリストは、ベクトルの数を3分の1(3はNMSkipのデフォルトの設定値)に削減 しています。

Reduced Poten	vector set fo ntial: 5.040	r Mesh along 0E-01	potential	contour
L	0.0000	3.1997	0.1128	3.1995
L	0.1128	3.1995	0.3167	3.1983
L	0.3167	3.1983	0.4206	3.1971
L	0.4206	3.1971	0.6181	3.1940

Mesh では線分が要素サイズより大きくなければなりませんので、Mesh に入力するためにはベ クトルの長い方が適切です。ベクトルのリストを Mesh の領域(region)定義に直接取り入れるこ とができるように、EStat はベクトルの各行の始めに文字 L を加えます。このリストを用いて、 ファイル「UNIFIELD02.MIN」を作成しました。充填(Filled)領域のすべてを完成させるた めに、左側境界に沿ってベクトルを付け加えました。電極近傍の等電界強度線の詳細な表示を 図 20 に示します。予想どおりに、電極表面上の電場の大きさは、電極の中心線から離れるに従 い減少しています。このデザインは次の2種類の方法で変更できます。

- 電極幾何形状の任意な選択により、2 番目の解析におけるギャップは 0.7561cm になり ました。ギャップまたは電極の幅を異なる長さにするために、発生電極のパラメータを 変更することもできます。
- 加工コストを削減するために、先端における低電場領域での複雑な表面を、単純な平面 に置き換えることもできます。

まとめると、EStat はベクトルを連続的に線上に配列する強力なソーティング(整列)機能 を持っています。この手順は、図20のような比較的簡単な形状に対してはうまく機能しますが、 形状が(たとえば鞍点のような)複雑な形状のとき、あるいは複数の不連続な線があるときに は、問題が起きます。このような場合は、ベクトルのリストを編集することが必要になるでし ょう。

図 20 等電界強度線を示す 2 番目の解析「UNIFIELD02」。 電極は、「UNIFIELD01」 の 0.504V の等電位線の形状を持つ。