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Figure 1: Screenshot – Trak in the orbit plotting mode.

1 Introduction

1.1 Program functions

Trak is a versatile program for charged-particle optics. Applications include electron and ion
guns, particle accelerators, ion sources, microwave sources, acceleration columns, electrostatic
and magnetostatic lenses, vacuum tubes, and electro-optical devices. Trak operates in con-
junction with field solution programs of the TriComp series. The program requires Mesh

(the TriComp universal mesh generator) along with EStat and/or PerMag to create field
input files. You should be familiar with mesh generation and field solution procedures be-
fore using Trak. The package includes GenDist, a utility for creating and analyzing particle
distributions.

This manual concentrates on procedures to runTrak and does not give detailed explanations
of the physics of charged-particle beams. Two texts written by the program author are supplied
with the package. They provide a comprehensive overview of charged-particle optics:

• S. Humphries, Jr., Principles of Charged Particle Acceleration (Wiley, New York,
1986).
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• S. Humphries, Jr., Charged Particle Beams (Wiley, New York, 1990).

The second work discusses beam distributions, emittance, beam-generated fields, propagation
of high-current beams, the design of electron and ion guns and other topics. Techniques for
electric and magnetic field solutions on a conformal triangular mesh are discussed in

S. Humphries, Jr., Field Solutions on Computers (CRC Press, Boca Raton, 1997).

1.2 Learning Trak

Trak is one of the most powerful tools available for the designing charged-particle guns and
transport devices. Capabilities include mixed source and space-charge-limited emission, self-
consistent field emission, advanced techniques for magnetic field created by relativistic beams,
and determination of an ideal plasma meniscus shape for ion emission. The extensive features
call for a rich command language and a thick instruction manual. To be realistic, it is unlikely
that you can use the program effectively without reading some of the manual. On the other
hand, we have included many features to make the learning process as painless as possible:

• This manual is available from within the program. There is an index and advanced topics
are clearly delineated.

• You can use interactive dialogs to set up program inputs for most calculations. It is easy
to add refinements and changes later.

• We included input files for a variety of prepared examples. They cover the full spectrum
of charged-particle applications and may serve as a template for your application.

To learn the program quickly, we suggest the follow sequence of activities:

• Read the next section carefully to understand the basic organization of a Trak simulation
and the associated data files.

• Follow the walkthrough example of Chap. 2. The exercise introduces the fundamental
tools you will need for you own simulations.

• Browse Chaps. 3 and 4. Chapter 3 describes how to use interactive dialogs to prepare
runs, while Chap. 4 covers commands in the main Trak menu to control a calculation.

• Scan Chapter 5, which describes Trak features for plots of orbit and field information.

• Run some of the supplied examples. Try making small small changes to the geometries,
material properties and particle distributions.

• As you gain experience, you will want to employ advanced capabilities. For example,
you can include multiple emission surfaces in a calculation or set some materials to act as
secondary-electron emitters. Advanced features are invoked by adding commands directly
to the input script.
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• Chapters on advanced features are organized by topic. Chapters 6 and 7 cover script
commands to load and to control electric and magnetic field information. For example,
you can add specified temporal modulations to fields.

• Chapters 8 through 14 describe advanced techniques for the calculation modes of Trak.
Chapter 8 covers single-particle tracking in specified fields. Chapter 9 documents com-
mands for precision tracing of electric field lines for applications such as ion mobility
spectrometry.

• Chapter 10 summarizes commands for an advanced program mode where the space-charge
of high-current beams contributes to the total electric field solution. In this mode, Trak
accurately models self-consistent Child-law emission from cathodes. Chapter 11 applies
to high-current relativistic beams where contributions from particles and current on elec-
trodes are combined to find both self-consistent electric and magnetic fields.

• Chapter 12 covers self-consistent field emission of electrons for applications to vacuum
microelectronics.

• Chapter 13 describes the unique Trak capability to directly calculate the ideal beam
current and emission surface shape for ion extraction from a free plasma boundary.

• Chapter 14 describes commands to control electron secondary emission from metal sur-
faces. The capability is useful to model electron collectors and multipactor effects in
high-power microwave sources.

• Finally, Chapter 15 summarizes advanced diagnostic capabilities of the code, including
statistical analysis of beam distributions.

• The Trak package includes GenDist, a utility for preparing particle input files for Trak
and other Field Precision programs. GenDist also has extensive routines for statistical
analysis and plots of distributions created by Trak. The features of the program are
described in a separate manual.

1.3 Program organization

Trak calculations generally involve the following steps:

1. Define the system geometry for an electric and/or magnetic field solution. The easiest
approach is to use the drawing editor of Mesh. You can also use a text editor for direct
input of boundary vectors. This activity creates Mesh input files with names of the form
FPrefix.MIN for the electric and/or magnetic field solution.

2. Use Mesh to process the vector information to generate one or two conformal triangular
meshes recorded in files with names of the form FPrefix.MOU. Trak can handle indepen-
dent meshes for electric and magnetic fields that overlap a common region of space.

3. Define the properties of materials in the solution using the script-generation dialogs of
EStat and/or PerMag. The resulting files have names of the form FPrefix.EIN and/or
FPrefix.PIN for the solution programs.
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Table 1: Trak files

Name Function

MName.MIN Mesh input script for the electric and/or magnetic field
solution

MName.MOU Mesh output (node locations and element identifies)
EName.EIN EStat input script (run control and material proper-

ties)
EName.EOU EStat output file (node locations and electrostatic po-

tential)
BName.PIN PerMag input script (run control and material prop-

erties)
BName.POU PerMag output file (node locations and vector poten-

tial)
TName.TIN Trak script (program control, field sources, particle in-

put parameters)
Name.PRT Optional Trak input file of initial particle parameters
TName.TLS Trak listing (assorted quantitative information on the

run sequence and particle properties)
TName.TOU Trak orbit file (particle positions to create plots)
Name.PRT Optional Trak output file listing particle parameters

at a stopping or diagnostic plane

4. Run EStat and/orPerMag to create input field solutions. The solution files FPrefix.EOU
and FPrefix.POU contain complete mesh information as well as values of electrostatic or
vector potential. Trak uses the information to compute E or B along particle trajecto-
ries. The program can also use the mesh information to determine if a particle strikes a
material object (i.e., stopping conditions).

5. Decide on a calculation mode and use the interactive dialogs in Trak to prepare an input
script FPrefix.TIN to control the run.

6. Run Trak to determine particle trajectories and (optionally) electric field modifications
to include contributions of space-charge.

7. Use Trak to create orbit/field plots or GenDist to analyze output particle distributions.

The procedure involves many steps and many files – it may appear overly complex for simple
benchmark calculations. The step-by-step approach with records of intermediate results rewards
your effort in real-world applications. In the end, you have a complete record of all components
of the solution, making it easy to reconstruct or to modify simulations. For orientation, Table 1
lists the file types that may appear in the Trak calculation. Note that the suffixes indicate the
file function.
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1.4 Some calculation basics

Trak calculates the orbits of point charged particles moving through electric and magnetic
fields. These fields may result from external charges and currents (such as the charge induced
on biased metal electrodes), surface charges in nearby dielectrics, or current in magnet coils.
Such fields are called applied fields indexapplied fields. For low-intensity beams, it is sufficient
to determine the applied fields and then to track any number of particle orbits in space. We use
the term single-particle orbits indexsingle-particle orbits when the fields created by the charge
and effective current of the particles are negligible. In this case, particle orbits are independent
of each another and it is unnecessary to modify the applied field to reflect the presence of the
beam.

Field evaluations and orbit calculations in Trak are entirely numerical. Field calculations
employ the finite-element method. Here, a bounded spatial region is divided into small segments
- the TriComp programs use elements with triangular cross sections. The sizes and shapes
of the triangles are adjusted to fit the boundaries of physical objects like electrodes. The
spatial distribution of the set of triangle nodes (vertices) is called the computational mesh. In
electrostatic calculations with EStat, the potential is determined at the nodes and the material
characteristics (such dielectric constant, space charge, or constant potential) are assigned to the
triangle volumes. A Trak run may also include an independent applied magnetic field solution
created with PerMag. The solution may have a different computational mesh fitted to the
boundaries of magnetic objects (such as coils or ferrites). The magnetic solution consists of
values of vector potential at the nodes. A single-particle orbit calculation is conceptually
simple. The orbit advances in small time steps. At any time, the program must identify
the element that contains the particle. With this knowledge it is possible to collect potential
values at neighboring nodes and take a spatial derivative to estimate electric fields. Similarly,
a knowledge of the occupied triangle in the magnetic mesh leads to the magnetic fields at the
particle position. Given the fields and the initial particle momentum, we can advance the orbit.
We can also check whether the particle is outside the mesh or in a non-vacuum element in order
to stop the calculation. A Trak calculation always follows an EStat and/or PerMag solution.
Even if there is no applied field, we need to create a computational mesh for the calculation of
beam-generated fields.

TriComp solution programs handle fields that vary in two dimensions in either cylindrical
structures (variation in r and z, uniform in θ ) or planar structures (variation in x and y, infinite
length along z). Trak computes particle orbits in three-dimensional Cartesian coordinates
(x, y, z) using the two-dimensional field components available from the solution programs. For
rectangular problems, the non-zero field components are Ex and Ey or Bx and By. Cylindrical
solutions yield the components Er and Ez or Br and Bz. The radial components are used to
derive the Cartesian field components according to:

Ex(x, y, z) = Er(r, z)(x/r), (1)

Ey(x, y, z) = Er(r, z)(y/r), (2)

Bx(x, y, z) = Br(r, z)(x/r), (3)

By(x, y, z) = Br(r, z)(y/r). (4)

Orbit calculations are more difficult for high-current beams. In this case, the space-charge
of the beam can contribute to electric fields in the propagation region and affect the distribution
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of image charge on surrounding electrodes. For this reason, Trak has the capability to update
the electrostatic field using information on the space-charge density associated with the particle
flow. This procedure is called a self-consistent orbit calculation. A beam is represented by a
collection of model particles, each carrying a fraction of the beam current, δI. At each time
step δt, the space-charge of the element occupied by a ray is augmented by an amount δIδt.
Trak then recalculates the electric field with the extra space-charge. The problem with this
approach is that the final orbits of the particles need not be the same as those used to calculate
the space-charge. The resolution is to iterate for several cycles using suitable space-charge
averaging. This procedure usually converges to the correct solution, even for intense beams.

High-current charged-particle beams have little effect on solenoid-type magnetic fields (Bz

and Br in cylindrical problems, Bx and By in planar geometry). Therefore, Trak does not
modify the applied magnetic field solution. On the other hand, relativistic beams generate
magnetic field components Bθ (cylindrical) or Bz (rectangular) that may strongly influence
particle dynamics. To address this problem, Trak has the capability to find spatial variations
of beam current and beam-generated magnetic fields that are recorded on the electric-field mesh
(RelBeam tracking mode).

1.5 Tracking mode

A Trak calculation is performed in one of the following six calculation modes:

• TRACK. Single-particle tracking in applied electric and magnetic fields with no beam-
generated components. Particles may be generated from a user-specified list or auto-
matically along an emission surface on a region boundary. Application to low-current or
neutralized beams.

• FLINE. Tracing field lines in an electrostatic solution from EStat. A common application
is computation of charged-particle flow lines in a resistive medium.

• SCHARGE Non-relativistic high-current electron and/or ion beams with self-consistent
space-charge effects. Particle generation from a user-specified list and/or Child-law emis-
sion surfaces.

• RELBEAM Relativistic high-current electron and/or ion beams with self-consistent effects
of beam-generated electric and magnetic fields. Particle generation from a user-specified
list and/or Child-law emission surfaces.

• FEMIT Electron field emission with self-consistent beam-generated fields. Particle gen-
eration from a user-specified list and/or an emission surface that follows the Fowler-
Nordheim equation. Applications to vacuum microelectronics.

• PLASMA High-current ion beam generation from free plasma surfaces, Particle gener-
ation from a user-specified list and/or Child-law emission surfaces. The shape of the
emission surface is automatically corrected to ensure uniform ion flux.
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Figure 2: Region definitions for the KLYSTRONGUN example. Dimensions in inches.

2 Application example

2.1 Setup

In this chapter we shall step through a Trak application. The calculation determines the
performance of a high-intensity, relativistic klystron gun. The gun is designed for strong beam
convergence and therefore represents a challenge to the accuracy of a numerical code. Figure 2
shows the geometry, a figure of revolution about the z axis along the bottom. An electron beam
of current 460 A is extracted from a spherical-section cathode across a 660 kV acceleration
gap. The simulations involve only an applied electric field – we could add a magnetic field to
investigate beam matching into a solenoid.

We shall use the following programs: tc.exe, mesh.exe, estat.exe and trak.exe. Make
sure that you have created a data directory such as \tricomp\buffer and the tc.exe has the
correct settings for the program and data directory. Move the file KLYSTRONGUN.MIN to the
data directory.

2.2 Defining the geometry

We shall work from an existing Mesh input script. Run Mesh, click on the command
File/Load.Script (MIN) and choose the file KLYSTRONGUN.MIN. Pick the command Edit script/Graphics
to enter the drawing editor. Here, you can view the geometry and confirm the region assign-
ments. Click the Foundation display command. Note the fine mesh resolution near the axis for
a good representation of electric fields within the converged beam. Figure 3 shows a detail of

10



Figure 3: Detail of the mesh on the axis near the cathode for the KLYSTRONGUN example showing
node identities.

the mesh at the axis near the cathode. The main difference from a standard input mesh for
EStat is the presence of Region 6, an open region that covers the surface of the cathode (nodes
marked in red in Fig. 3). The associated nodes have the same potential as those of the cathode
(Region 3); therefore, they do not affect the electrostatic solution. The marked nodes are used
in Trak to identify surface facets that will act as emission sites for electrons.

Abandon the drawing to return to the main menu. Click the Process command to create
the mesh. You can use the plot functions of Mesh to inspect the completed conformal mesh.
Be sure to click the Save mesh (MOU) command to create the file KLYSTRONGUN.MOU.

2.3 Generating the applied field

The first task to create an input electrostatic solution is define control parameters and material
properties. Run EStat and choose the Setup command. Choose the file KLYSTRONGUN.MOU.
The program displays the dialog of Fig. 4. Fill in the values as shown. In the Control parameter
group, we accept most of the defaults. The geometry is set to Cylindrical and the unit conversion
parameter is set to DUnit = 39.37 inches/meter. The material properties in the grid are simple.
Region 1 (vacuum) is a dielectric with ǫr = 1.0. Regions 2 (anode) and 5 (vacuum chamber)
are at ground potential, while the electrode regions of the cathode assembly (Region 3, 4 and
6) are at -660.0 kV. Click OK and accept the default name to create the file KLYSTRONGUN.EIN.

Choose the Solve command. EStat takes a few seconds to find the electrostatic solution
and saves the file KLYSTRONGUN.EOU. You can use the plot functions of EStat to investigate the
solution. Later, Trak will create another electrostatic solution file, KLYSTRONGUNP.EOU, that
includes the effects of the beam space charge.

2.4 Creating the Trak control script

We can now turn to the main task of generating a beam solution. Run Trak and pick the
Setup command. The dialog gives a choice of run mode. Electrons with 660.0 keV kinetic

11



Figure 4: Setting parameters for the EStat solution – KLYSTRONGUN example.

energy have a relativistic energy factor γ = 2.29, significantly larger than unity. Therefore,
beam-generated magnetic fields play a significant role and we must choose the RelBeam option
in the initial dialog. After you click OK, the program displays the setup dialog of Fig. 5. Fill
in the values as shown. In the Fields section we specify that the program should load mesh
and initial electric field information from KLYSTRONGUN.EOU. The parameters MaxCycle and
ResTarget control recalculation of the electric field with the addition of beam space charge.
Spatial quantities appearing the script should be scaled by a factor (39.37)−1 to convert them
to meters. In the Particles section we specify two parameters to control the self-consistent
solution. There are 20 cycles of orbit tracking and field recalculation with a charge-averaging
factor Avg = 0.20. Electrons will be generated along an emission surface of facets connecting
the nodes of Region 6. The parameters in the Emission section have the following meanings:
1) Mass = 0.0 (insert the electron mass in AMU), 2) Charge = −1.0 (use the electron charge)
and DEmit = 0.07 (position the Child-law calculation surface about 2.8 element widths from
the physical cathode surface). Section 10.3 describes emission surface parameters in detail.
Finally, entries in the Diagnostics specify that the code should create a file KLYSTRONGUNP.PRT
containing particle parameters at the system exit and a file KLYSTRONGUNP.EOU that describes
the modified electric field. Click Write script and save the file in the working directory with
the name KLYSTRONGUN.TIN.

2.5 Running Trak and plotting orbits

Pick the command Solve in the Trak main menu and choose the input file KLYSTRONGUN.TIN.
The blue color of the screen indicates that the program is in the solution mode. The status bar
at the bottom reports progress. For each of 20 main cycles, Trak computes orbits of 216 model
particles, corrects the space charge and then performs an iterative matrix solution to find the
modified electrostatic potential. On the final cycle, the program creates the PRT and EOU files
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Figure 5: Setting parameters for the Trak solution – KLYSTRONGUN example.

requested as well as a record of orbit vectors in the plot file KLYSTRONGUN.TOU.
Pick the Plot command to enter the plot menu and click on File/Load electric field. In

the dialog choose KLYSTRONGUN.EOU. The program reads the file and creates a default plot of
equipotential contours. In comparison to the applied-field solution, note that the electric field
amplitude over the cathode surface has been reduced to approximately zero by the Child-law
emission process. Next, pick Load/Orbits and choose KLYSTRONGUN.TOU. The program super-
imposes the orbits on the boundary and field information. At this point, you can experiment
with options in the plot menu. Section 5.2 gives a detailed description of available functions.
The plot of Fig. 1 was created by choosing the Element field plot type and |E| as the plotted
quantity. To differentiate orbits, the parameter NSkip in the Orbit filters dialog was set to 3.

The Trak listing file contains a wealth of information for understanding a run or debugging
problems. Return to the main menu, pick the command File/Edit listing (TLS) and choose
KLYSTRONGUN.TLS. Move to the end of the file. Following an extended table of final particle
parameters, there is a listing of total emitted current as a function of cycle number (Table 2).
This information is useful to check if the choices of the number of cycles and the charge-averaging
parameter were correct to ensure solution convergence. With proper averaging, Trak converges
to a solution where the particle orbits and consequent space-charge density are consistent with
the total electric field.

2.6 Modifying the script for advanced dialognostics

Trak has an extensive set of special features. It would be unwieldy, if not impossible, to include
all of them in the script generation dialogs (Fig. 5). In this section, we shall add commands
to the script we have prepared to invoke two special functions: 1) calculation of beam current
density as a function of radius at several axial positions and 2) generation of a file contain
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Table 2: Current convergence history – KLYSTRONGUN example.

NCycle Total emitted

current (A)

========================

1 5.1091E+02

2 5.1802E+02

3 7.3695E+02

4 8.6296E+02

5 8.3152E+02

6 5.9833E+02

...

14 4.7854E+02

15 4.7855E+02

16 4.7860E+02

17 4.7867E+02

18 4.7873E+02

19 4.7876E+02

20 4.7887E+02

information on the spatial distribution of beam-generated magnetic field.
In the mainTrakmenu, pick the command File/Edit script (TIN) and choose KLYSTRONGUN.TIN.

The file is loaded in a full-featured Windows editor. Modify the Diagnostics section of the script
so that it looks like Table 3. The CDens commands instruct the program to calculate the beam
current density through planes normal to the z axis at several distances from the cathode. The
BBDump command saves information on the toroidal magnetic field.

In response to the CDens command, Trak uses information stored on the beam-magnetic-
field mesh to add tables to the listing file. Figure 6 shows a plot of the radial current distribution
of the converging beam. Note how nonlinear focusing fields on the beam envelope have produced
a local enhancement of current density. The file KLYSTRONGUNP.BBD can be loaded into Trak

with the Load beam magnetic field command of the plot menu. Boundaries and values of |Bθ|
can be included in orbit plots.
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Table 3: Modified diagnostic section - KLYSTRONGUN example.

DIAGNOSTICS

PARTFILE: klystrongunp

EDUMP: klystrongunp

PARTLIST

* Add these lines

CDens 1.0 1.2 30

CDens 2.0 0.8 20

CDens 3.0 0.6 16

CDens 4.0 0.4 12

CDens 5.0 0.3 10

BBDump KLYSTRONGUNP

END

Figure 6: Radial distribution of beam current density at several distances from the cathode –
KLYSTRONGUN example.
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3 Interactive run setup

3.1 Structure of the Trak script

A control script FPREFIX.TIN is required for each Trak run. This chapter discusses how to
create scripts using the interactive dialogs that appear in response to the SetUp command in
the main Trak menu. Following chapters give detailed information on building scripts and
adding features with a text editor.

Whichever method is used, it is useful to understand the script format. A script has three
sections: Fields, Particles and Diagnostics. The file has the following structure:

Fields

(Field commands)

End

Particles RunMode

(Particle commands)

End

Diagnostics

(Diagnostic commands)

End

EndFile

The sections must appear in the order shown and must terminate with an End command. Each
section has a set of allowed commands. Within a section, valid commands may appear in any
order. Trak begins processing a section when all commands have been read. The EndFile
command closes all files and stops the program.

The commands in the Fields section control input of field solution files from EStat and/or
PerMag. Advanced commands are available to adjust field values, introduce time variations,
add constant magnetic field components and adjust the potential of individual electrodes.

The Particles section controls orbit computations. A string parameter in the section heading
specifies the tracking mode (Sect. 1.5): Field, Track, SCharge, RelBeam, FEmit or Plasma. The
valid commands of the Particles section depend on the tracking mode - the program stops with
an error message if it finds an invalid command. The commands of the Particles section serve
three functions:

• Controlling orbit calculations (global boundaries, mesh search options, time step, listing
options, ...)

• Initiating particle orbits (particle parameters, marked emission surfaces, ...)

• Defining stopping criteria
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Figure 7: Run setup dialog – Track mode.

Trak reads all commands in the Particles section, processes the information, and then computes
the orbits. Depending on the tracking mode, the program may also update the potential and
recalculate orbits over a number of cycles.

The commands of the Diagnostics section control special output listings of information on
fields and calculated orbits. Trak can record scans of applied magnetic fields, self-consistent
electric fields and beam-generated magnetic fields. The program makes formatted listings and
output files of initial and final particle parameters. The program can perform automatic anal-
yses of final beam distributions. You can also use GenDist for distribution calculations if the
Trak run generates an output particle file.

3.2 Track mode

Trak features interactive dialogs to help you create basic run control scripts. To start, click
the SetUp menu command or tool. In the initial dialog, pick the appropriate tracking mode. If
you choose the default Track mode, the program calls up the dialog of Fig. 7. Note that dialog
entries are divided into the same three categories as the Trak script: Fields, Particles and
Diagnostics. Entries in the different dialog groups create commands in the corresponding script
section. This chapter gives a brief description of the actions of the dialog entries. Detailed
descriptions and commands to control advanced functions are described in Chaps. 6 through
15.

EFILEPREFIX
The prefix of an EStat solution to provide electric field information for particle tracking.

BFILEPREFIX
The prefix of a PerMag solution to provide magnetic field informations for particle tracking.
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DUNIT
A conversion factor for lengths that appear in Trak script commands, equal to the number of
distance units per meter. For example, to supply dimensions in microns, set DUnit = 1.0×106.

PPREFIX IN
Supply the prefix of a file PPREFIX.PRT that contains a list of start parameters for particles.
The format of the file is described in Sect. 8.2.

DT
Supply a time step (in units of seconds) for orbit integrations. If the box is blank or contains 0.0,
Trak will try to pick an appropriate value based on the properties of the mesh, the electric-field
solution and the particle parameters.

The next four commands appear in the Emission surface group. An emission surface is
an alternate way to initiate particle orbits. Trak identifies element facets of a fixed-potential
region (electrode) and starts one or more particles per facet close to the surface in an adjacent
dielectric element.

REGNO
Supply the number of an emission line region on the surface of a fixed-potential region. Sec-
tion 8.3 covers techniques to create emission surfaces in Mesh.

MASS
Supply the mass of particles created on the emission surface in AMU (atomic mass units). Trak
inserts the mass of the electron if 0.0 appears in the box.

CHARGE
Supply the charge of particles created on the emission surface in fundamental charge units.
Here, protons have Charge = +1.0 and electrons have Charge = −1.0.

NPERSEG
Enter the number of orbits to start per emission surface facet.

PPREFIX OUT
Supply a name if you want Trak to write a file PPREFIX.PRT of final orbit parameters. The
file may be used as input in a subsequent Trak run or ported to the Field Precision programs
GenDist, OmniTrak and GamBet.
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Figure 8: Run setup dialog – FLine mode.

3.3 Field line mode

If you choose the FLine mode, Trak displays the dialog of Fig. 8. Field line tracking applies
only to electric fields because magnetic field-line plots can easily be created in PerMag. Hence,
there is no BFileName entry in the Fields section.

FFILE PREFIX
Supply the prefix of a file PREFIX.FLD that contains a list of start parameters for field lines.
The format of the file is described in Sect. 9.1.

DS
Field line integrals proceed in small spatial steps rather than time steps. Enter a value in units
specified by DUnit. Trak will pick a default if the field is blank or equals 0.0.

Entries in the Emission surface group are similar to those of the Track mode dialog. The
main difference is the absence of particle parameters and the presence of the following entry.

POLARITY
For Positive polarity, the spatial integral proceeds along the direction of positive electric field.

3.4 Space-charge and relativistic beam modes

The dialog of Fig. 9 is displayed when you pick either the SCharge or RelBeam modes. In
comparison to the dialog of the Track mode, there are two additional entries in the Fields
group.

MAXCYCLE
Particle orbits are computed and the electric field is recalculated over NCycle field/particle
cycles to include the effect of beam space charge. The parameter MaxCycle is the maximum
number of iterations in the matrix solution for the electrostatic potential. Higher values give
more accuracy at the expense of longer run times. The value of MaxCycle should be high
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Figure 9: Run setup dialog – SCharge and RelBeam modes.

enough to ensure convergence at the end of the run. A solution is convergent if the following
conditions are satisfied:

• The current from emission surfaces changes little between field/particle cycles.

• The initial relative residual (average error in the electrostatic potential) has a low value
(≪ 1.0× 10−6) entering the final particle/field cycle.

RESTARGET
Set a value for the target relative residual in the matrix solution for the electrostatic potential.
The quantity is a measure of the accuracy of the solution and should be small compared to unity.
Trak exits the field recalculation routine it the number of interactions exceeds MaxCycle or
if the residual is less than the target value. Choices of MaxCycle and ResTarget affect the
solution accuracy versus the run time.

The Emission surface group in the Particles section has the following additional parameter.

DEMIT
The quantity DEmit is the distance between the physical source surface (e.g., cathode surface)
and a virtual emission surface required to model Child-law emission. Enter DEmit in units set
by the current value of DUnit. The virtual surface be close to the source source and follow its
general contours. On the other hand, DEmit must be ≥ 1.5 times the local element width to
ensure accurate calculations of the electric field.
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Figure 10: Run setup dialog – FEmit mode.

EPREFIX OUT
Record the final electrostatic field solution with the effects of space-charge in a file with the
name EPREFIX.EOU. The file may be inspected with EStat or loaded into Trak for a subsequent
solution.

3.5 Field-emission mode

Figure 10 show the dialog to generate a script for the FEmit mode. The entries are identical
to those of the SCharge/RelBeam dialog with the exception of those in the Emission surface
group. Because the mode handles only electron field emission, the options Mass and Charge
are not included.

WORKFUNC
Enter the emission surface work function in units of eV.

BETA
The quantity β is a parameter to represent field enhancement by submicroscopic structure of
the emission surface (e.g., a patch covered with carbon nanotubes). Trak calculates the local
field amplitude |E| and uses the quantity β|E| in the Fowler-Nordheim equation to find the
local electron current density.

3.6 Plasma mode

The optimizing calculation in the plasma mode is complex and may require adjustment of
parameters to achieve good results. It is essential to read Chap. 13 to understand the actions
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Figure 11: Run setup dialog – Plasma mode.

of entries. Many entries have identical function to those in the SCharge and RelBeam modes.
This section gives a brief summary of quantities unique to the Plasma mode. The Plasma
group contains the following entries:

NSURFACE
The number of cycles of surface adjustment. The default is NSurface = 3.

NCORRECT
The number of orbit-field recalculations to determine a stable solution for space-charge-limited
flow per surface adjustment (default, NCorrect = 5).

NINIT
The number of initial orbit-field calculations before the first surface adjustment (default, NInit =
12).

The Emission surface group contain one additional parameter:

DGAP
The approximate total width of the acceleration gap in units set by the current value of DUnit.
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4 Running the Trak program

4.1 Interactive mode commands

Trak runs interactively in a window if you launch trak.exe from TC or run the program
without a command-line parameter. In this mode, you can carry out a variety of activities and
perform several solutions in a session. In the interactive mode, the program serves three main
functions, corresponding to the tools ”1”, ”2” and ”3”:

1. Setup, preparation of control scripts.

2. Run, generation of orbit solutions.

3. Plot, creation of orbit/field plots.

Note that Trak can perform only one function at a time. If you want to carry out extended
orbit solutions while you are writing scripts or making plots, then launch a second instance of
trak.exe. There is no speed penalty if you have a dual-processor machine.

The main menu has five entries: File, Setup, Solve, Plot, Tools and Help. We discussed
Setup options in Chap.3, while the next chapter covers plotting capabilities. The following
commands appear in the File, Solve and Help popup menus:

EDIT SCRIPT (TIN)
EDIT LISTING (TLS)
EDIT FILE
The commands invoke the internal editor to inspect or to modify text input and output files.
With the Edit script command you can work on files with names of the form FPREFIX.TIN,
while the Edit listing command displays file of type FPREFIX.TLS. Choosing a file from an
alternate directory does not change the working directory of the program.

RUN
Pick an input file with a name of the form FPREFIX.TIN to start a solution. The working
directory changes if you pick a file from an alternate directory. The run begins if all required
files are available in the working directory. The screen color is blue during extended calculations
and the program reports run progress in the status bar.

STOP
This command terminates the run immediately. The program records information currently
available and closes all files.

TRAK MANUAL
Displays this document in your default PDF viewer. Note that trak.pdf must be in the same
directory as trak.exe.
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Figure 12: Utilities in the Tool menu. a) Circular-beam generator. b) Time-step calculator.

4.2 Tool menu

This menu contains helpful utilities for run preparation.

CIRCBEAM GENERATOR
This command brings up the dialog of Fig. 12a to create a PRT file describing a laminar, circular
beam with uniform current density. The routine generates a set of NPart orbits uniformly
spaced in r. The assigned current is proportional to r to give a uniform current density. The
average beam motion is directed along z. A non-zero value for the envelope angle gives a
diverging or converging beam with additional momentum components in the x direction. If the
Mass equals zero, the program inserts the mass of the electron.

TIME-STEP CALCULATOR
In response to this command, Trak displays the dialog of Fig.12b for estimating values to use
in the Dt command. Enter a value for the minimum element size and choose the appropriate
length unit. Enter the particle parameters including maximum kinetic energy. The Atomic
number value is used only for the particle type Ions. When you click the Calculate button, the
program displays an appropriate value for Dt in seconds.

4.3 Command-line operation

You can invoke the orbit solution function of Trak directly from the command prompt. This
feature is useful for batch file operation where a sequence of calculations runs automatically in
the background. To make a single Trak simulation in the background, go to the Command
Prompt in Windows and log to the data directory that contains the required input files. For
example, suppose the input files SWITCH.TOU and SWITCH.TIN are stored in \TRICOMP\BUFFER
and that the program trak.exe is in the directory \TRICOMP. From \TRICOMP\BUFFER type

..\Trak SWITCH <Enter>
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The program runs silently, writing detailed information in the listing file SWITCH.TLS and the
plot file SWITCH.TOU.

The command mode is useful for autonomous operation under batch file control. As
an example, suppose you have prepared the input files KINJECTOR.MIN, KINJECTOR.EIN and
KINJECTOR.TIN. The following batch file will initiate a complete calculation:

ECHO OFF

ECHO Running KINJECTOR example

START ..\MESH.EXE KINJECTOR

START ..\ESTAT.EXE KINJECTOR

START ..\TRAK.EXE KINJECTOR

ECHO KINJECTOR runs complete
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Figure 13: Working environment for creating orbit/field plots.

5 Creating orbit plots

In response to the Plot command in the main menu, Trak enters a mode to create displays
of orbits and field quantities. The program loads the command menu, toolbar and status bar
shown in Fig. 13. There are three popup menus: File, Plot control and Export plot. The Return
command restores the main menu. The display area is divided into three sections: 1) main
plot, 2) particle information area (upper right) and 3) field information area (lower right).

5.1 File menu commands

LOAD ORBITS
To begin a plotting session, you must load data from either an orbit or field file. Use this
command to load orbits. The dialog shows a list of files with names of the form FNAME.TOU.
Changing directories in the dialog changes the working directory. In the absence of a field file,
Trak picks boundaries for the initial plot based on extreme values of the orbit vectors.

LOAD ELECTRIC FIELD
Load a file of boundary and electric field information with a name of the form FNAME.EOU. The
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file could be output from EStat or one created by Trak using the EDump command. There
are three points to note:

• When a field plot is loaded, the boundaries of the solution region are used for the default
plot boundaries.

• The program cannot check whether the field corresponds to the orbits – you must ensure
that the data files match.

• If you have applied a spatial shift to the electric field in the Trak run, the orbits will be
inconsistent if load the input applied field. You must create a file of the modified electric
field using the EDump command and load it for a valid superimposed plot.

LOAD MAGNETIC FIELD
Load information from a file with a name of the form FNAME.POU generated by PerMag.

LOAD BEAM MAGNETIC FIELD
Load a file with a name of the form FNAME.BBD generated by Trak in a RelBeam calculation
in response to the BBDump command.

CLOSE ORBIT FILE
Close the current orbit file in preparation for loading another one, keeping the current field plot
active.

CLOSE FIELD FILE
Close the current field file in preparation for loading another one, keeping the current orbit plot
active.

CLOSE ORBIT AND FIELD FILES
Close all currently-loaded orbit and/or field files in preparation for loading new data.

ORBIT FILE INFORMATION Display information about the current orbit file (Fig. 14). The
data on the spatial limits and the range of particle parameters (mass, charge and current) may
be useful for setting plot filters. Note that information on the mass and charge of individual
particles is present in all TOU files created by Version 7.0, but is not included in data files created
by earlier versions of Trak.

FIELD FILE INFORMATION Show information on the current electric, magnetic or beam-
generated magnetic field file.
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Figure 14: Information on the currently-loaded orbit file displayed in a message box.

5.2 Plot control menu commands

ORBIT PLOT TYPE
Using the (x, y, z) coordinates recorded in the plot file, Trak can create the following two-
dimensional plots: y versus x, x versus z, y versus z and r versus z. Depending on the field
symmetry, different plot types may or may not contain useful information. Trak suppresses the
field plot if it is inconsistent with the current orbit plot type. The default types are x versus y
for planar calculations and r versus z for cylindrical.

ORBIT FILTERS
This command calls up the dialog of Fig. 15 to set filters for plotting particle orbits. You can
use filters to set a plot color or to suppress plotting for classes of particles. For example, if the
Trak calculation involved a counterflow of electrons and ions, you could plot electrons in red
and ions in blue by setting filters based on particle mass. As shown in Fig. 15, there are three
filters with associated screen colors blue, red and green. When a new orbit file is loaded, the
default settings are that Filter 1 is active and encompasses all particles, while Filter 2 and 3 are
inactive. The filter status is displayed in the information window. Within a filter, the active
status of the selection criteria depend on the information recorded in the TOU file. To activate
a filter, check the Active box and supply information in the active criterion boxes. The input-
quantity units are amperes or amperes/m for current, AMU for mass and the fundamental
electron charge (e = 1.60210 × 10−19). The boxes on the right-hand side of the dialog define
additional selection criteria. The parameter NSkip can be adjusted to reduce the density of
orbits in a plot for clarity. For example, when NSkip = 5 Trak plots orbits N = 1, 6, 11, ....
The number N gives the order in which the orbit appears in the TOU file and output PRT files.
Use the parameters NPlotMin and NPlotMax to limit the range of N .
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Figure 15: Dialog to set filter criteria for the display of particle orbits.
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FIELD PLOT TYPE
The program supports the following plot types:

• Mesh. Element facets of the computational mesh.

• Region. Computational mesh with elements color-coded by region number.

• Contour. Lines that follow constant values of a computed quantity: electrostatic poten-
tial, vector potential or stream function or Bθ. When a magnetic field has been loaded,
the contours show lines of magnetic flux density B.

• Element. Elements of the solution space color-coded according to a computed quantity
(such as the electric field magnitude)

FIELD QUANTITY
This command affects only element plots. Available quantities are φ or |E| for electric field
files, field lines or |B| for magnetic field files and and Bθ or enclosed current for beam-generated
magnetic field files.

PLOT LIMITS
Use this command to set limits for the field quantity or to restore automatically scaling in field
plots.

NUMBER OF CONTOURS
Change the number of lines in contour plots.

GRID CONTROL
Open a dialog to control the display of grid lines. Here, you can activate or suppress grid
display. Alternatively, you can use the Toggle grid tool. You can also set specific horizontal or
vertical intervals or restore automatic intervals. In the latter case, Trak chooses grid spacing to
correspond to easily recognized numbers ( i.e., 0.01, 0.02, 0.05, ...). The intervals are displayed
in the information area the grid is active.

ELEMENT OUTLINES
Use this command if you want to add the boundaries of elements to mesh, region and element
plots. The feature may be useful to check whether the grid resolution is adequate in a Trak

simulation. If you deactivate element outlines in a mesh-type plot, the program includes only
outlines of region boundaries.

XY MAGNIFICATIONS
By default, Trak generates plots at approximately true scale. (The exact scaling depends on the
properties of your monitor and the proportions of the program window.) The program has an
alternate plot mode that is useful for charged-particle beam simulations where the solution size
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in the transverse direction may be much smaller than the axial size. In the XY magnification
mode, you can manually specify the coordinates of the plot boundaries. Trak adjusts scales so
that the plot fills the full plot area. Note that the zoom and pan commands are inactive in the
XY magnification mode.

RESET PLOTS ON LOAD
In the default mode, Trak automatically resets plot parameters (current view, plot type, mag-
nification mode,..) when you load new data with the commands of Sect. 5.1. Sometimes, you
may want to compare a series of similar runs maintaining a specific view or magnification lim-
its. In this case, use this command to deactivate autoscaling. The current setting (Autoset plot
parameters or Fixed plot parameters) is shown on the right-hand side of the status bar. Note
that Trak automatically rescales the plot when you switch from Fixed to Autoset mode.

SAVE CURRENT PLOT
This command (which appears in the Export plot menu) is useful if you want to superimpose
electric field, magnetic field and orbit information in the same plot or if you want to make a
plot that shows small differences between orbit solutions. When you click on the command,
Trak creates a bitmap image of the current plot. In the dialog, supply a file prefix. The plot
will be stored in standard Portable Network Graphics format with the name FPREFIX.PNG. You
can then superimpose this image on subsequent plots.

COMBINE PLOTS
Combine the current plot with a stored bitmap image (or any PNG image) using the bitwise AND
operation. The dialog displays a list of files with suffix PNG.

UNDO COMBINATION
Reverse the image combination and restore the plot.

As an example, you might load a large volume magnetic field solution, set the plot limits
to correspond to an electric field solution and then save the bitmap. You could then load orbit
trajectories and the electric field solution to create a new plot. Finally, use the Combine plots
command to include magnetic field lines. Figure 16 shows an example. Here are some rules for
using bitmap superposition:

• For an accurate superposition, you must ensure that the current plot and the bitmap plot
have the same spatial limits.

• The superposition looks best if one of the plots contains discrete line data (e.g., contour
lines or particle orbits). Combining two element plots would give unpredictable results.

• For the best appearance, do not resize the program window between recording and com-
bining operations. If the window has been resized, Trak will make its best effort to stretch
the bitmap to fit.
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Figure 16: Plot combining particle orbits, electrostatic equipotential lines, magnetic field lines
and region boundaries in both field solutions.

• The Plot file commands in the Export menu use vector operations to reconstruct the
current plot and will not include the combined information. To save the combined plot,
use the Save current plot command.

CONTOUR PLOT STYLE
Choose the method for displaying electrostatic contours or magnetic field lines. There are four
choices: monochrome, monochrome with labels, colored and colored with labels. In the colored
mode, the lines are color-coded according to the value of the plotted quantity. A legend is
included in the information window to the right of the plot. In the labeled modes, contour lines
are numbered according to their values. Overlapping labels on closely-spaced lines may look
better in a zoomed view.

SETTINGS/MOUSE/KEYBOARD
SETTINGS/SNAP MODE
SNAP DISTANCE
ZOOM WINDOW
ZOOM IN
EXPAND VIEW
GLOBAL VIEW
PAN VIEW
DEFAULT PRINTER
SAVE PLOT FILE
COPY TO CLIPBOARD

These commands adjust the plot view and send plots to printers and graphics files. Their
functions are described in the EStat and PerMag manuals.
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Figure 17: Distribution plot menu showing a phase space plot for an annular beam.

5.3 Distribution plot menu

In the Distribution menu, you can investigate the evolution of beam distributions as a function
of position along the x (planar) or z (cylindrical) axis. There are two requirements to plot
distributions:

• An orbit file (FNAME.TOU) must be loaded.

• Particle motion should be paraxial about x or z.

The second item implies that the particles constitute a recognizable beam (i.e., orbits make
small angles with respect to the axis).

When you enter the Distribution menu, Trak creates a default phase-space plot at a po-
sition along the axis approximately midway between the orbit starting and ending positions
(Fig. 17). The plot shows the transverse displacements of particles from the axis (y or r) and
the corresponding angle with respect the axis (y′ or r′). The displacements are in the units set
by the value of DUnit in the TOU file and the angles are in degrees. You can move in x or z
with the following commands:

• Jump forward (double up-arrow tool): Move a large step in the +x or +z direction.

• Step forward (single up-arrow tool): Move a small step in the +x or +z direction.

• Step backward (single down-arrow tool): Move a small step in the −x or −z direction.

• Jump backward (double down-arrow tool): Move a large step in the −x or −z direction.
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Alternatively, you can use the Set plane command to bring up a dialog. Here, you can move a
slider to set an approximate position or type an exact value in the box.

In the default mode, Trak rescales graphs to fit the full plot area as you move. If you want
to compare distributions, use the Plot limits command to set fixed values for the minimum and
maximum values or displacement and/or angle. In the dialog, uncheck the Autoscale box and
supply limits. The values computed for the plot may be exported to a text file. To activate the
feature, click the command Toggle plot recording in the Export plot menu. Supply a prefix for
a file with a name of the form FPREFIX.DPL (Distribution PLot). The values for subsequent
graphs are recorded in the file. Click the command again to close the file and end recording.
The following is a portion of the listing for the graph of Fig. 17:

Phase-space distribution, Z: 7.50750E+00

r rp(deg)

==========================

5.28484E+00 1.14543E+00

5.28728E+00 1.16563E+00

5.28968E+00 1.19258E+00

Click on the Plot quantity command or tool to switch to a plot of current density as a
function of y or r. Depending on the number of available particles, Trak picks an optimum
number of bins along y or r and assigns current using the cloud-in-cell method. Each particle
has a transverse width 2∆r, where ∆r is the average spacing between particles. If a particle
overlaps a bin, a portion of the particle current is assigned equal to the fraction of overlap.
The procedure gives satisfactory results, even with a relatively small number of particles. The
limitation is that variations of current over length scales less than ∆r cannot be resolved. Use
more particles to improve the resolution. The Plot limits command is not active for current-
density plots. To make comparisons, you can transfer information in the recording file to your
own plot program. An example is shown below. The recorded quantities are the minimum,
maximum and average transverse positions of the bin and current density in A/cm2.

Current density calculation, Z: 8.10690E+00

RIn ROut RAvg jz(A/cm2)

====================================================

5.28979E+00 5.30097E+00 5.29538E+00 3.63497E+00

5.30097E+00 5.31214E+00 5.30655E+00 4.25687E+00

5.31214E+00 5.32332E+00 5.31773E+00 4.26024E+00
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6 Electric field input and control

6.1 General commands

The first step processing a Trak script is to define electric and/or magnetic fields by reading
solution files from EStat and/or PerMag. Commands that appear in the Fields section control
this function. This chapter covers commands to load and to modify electric field solutions from
EStat. Commands are displayed with symbolic parameters and also in the form they would
appear in the script file.

DUNIT DUnit
DUNIT = 39.37
This command controls the interpretation of spatial coordinate input from script commands.
The quantity DUnit (real) is the number of distance units per meter. For example, to enter
positions in cm, set DUnit = 100.0. The command can appear anywhere in the script and
affects all following commands. Note that the values of DUnit defined in the EStat or PerMag

input scripts set coordinates for the input meshes but have no effect on position quantities
entered in the Trak script. The quantity DUnit is recorded in the TOU plot file and used to
scale plot dimensions.

BOUNDARY X1 Y1 X2 Y2
BOUNDARY Z1 R1 Z2 R2
BOUNDARY = (0.0, 0.0, 20.0, 5.0)
Orbit calculations are performed inside a two-dimensional solution box with opposite corners
defined by (x1, y1)-(x2, y2) for planar solutions or (z1, r1)-(z2, r2) for cylindrical geometry. Enter
coordinates in units set by DUnit. Particle orbits terminate if they move outside the box. Trak
interpolates the final orbit step so that the stopping point lies exactly on the box surface. If
the Boundary command does not appear, Trak sets the solution volume as the largest box
that overlaps the electrical and/or magnetic solutions. In the Track (single-particle) mode, the
program sets the ballistic flag if the Boundary command is present. In this case, orbits continue
even if they leave the boundaries of the electric and/or magnetic solution volume. The program
takes E = 0.0 and B = 0.0 in regions that are inside the orbit calculation box but outside the
field solution volumes. As an example, the ballistic mode is useful if you want to trace orbits
to a focal point at a distance from a lens with localized field. Note that the ballistic mode may
not be used in the SCharge and RelBeam modes because space-charge must be assigned along
the full particle trajectory.
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6.2 Loading and modifying EStat solutions

EFILE FileName [EMult]
EFILE = KlyGun.EOU
This command loads an electric field solution from EStat. The quantity FileName is the full
name of the file (i.e,, EFTEST.EOU). The optional real-number parameter EMult is a global
scaling factor. All values of electrostatic potential at nodes are multiplied by EMult when
they are loaded into the program. This factor is useful if you want to investigate scaling with
applied voltage without regenerating the EStat solution. The EStat file must be available in
the working directory. The z axis in the field solution corresponds to the z axis for particle
tracking in Trak. A solution with cylindrical symmetry has field components Er and Ez. The
program determines Ex and Ey for tracking from Er from the particle position. A planar
solution has field components Ex and Ey with Ez = 0.0.

Note: In runs with both electric and magnetic fields, the field solutions must have the same
symmetry - planar or cylindrical. In cylindrical simulations, both the electric and magnetic
solutions must share the same z axis.

SHIFT E ZEShift
SHIFT(E) = -5.67
This command with the string parameter E moves nodes in the electric field mesh along the x
direction (planar) or z direction (cylindrical) according to

znew = zold + Zeshift. (5)

Enter the real-number parameter ZEShift in the current units set by the DUnit command. As
an example, you could use this command to make small changes in the position of the electric
solution relative to a magnetic solution to optimize beam matching to a magnetic focusing
system. The command is also useful in simulations of particle motion through a periodic
focusing system. Here, you can split the particle simulation into several stages with shifted
field solutions.

MODFUNC E TABLE FileName [Toff Tmult Foff Fmult]
MODFUNC(E,TABLE) = StepFunc.WAV
You can use the form of the ModFunc command to add an arbitrary temporal modulation of
electric fields. This capability may be applied only in the Track tracking mode. The keyword
Table designates that a tabular function will be imported from a file. The quantity FileName
is the full name of the file (available in the current directory). The file consists of data lines
that define the time variation of a function.
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Temporal tables have the format:

t1 fe(t1)

t2 fe(t2)

t3 fe(t3)

...

tn fe(tn)

ENDFILE

Values of t should be in units of seconds and values of fe(t) may be in any relative units. The
number of data lines should be less than or equal to 256. If the optional real-number parameters
Toff, Tmult, Foff and Fmult appear, values in the table are modified according to

tcode = Tmult ttab + Toff , (6)

fcode = Fmult ftab + Foff . (7)

The modulation file follows the standard rules for TriComp tabular functions. You can
use any of the standard delimiters to separate quantities on the line including Space and Tab.
Comment lines (beginning with an asterisk) may be included. Note that all particle orbits start
from their initial position at t = 0.0. Using the elapsed time t of an orbit, the program applies
a cubic spline interpolation to find fe(t). The table values should define a smooth function with
continuous first derivatives. All electric field components are then multiplied by fe(t).

By default, Trak interprets the table as a periodic function. If the elapsed time of an orbit
exceeds the maximum time on the table, Trak returns to the beginning. To illustrate, if the
orbit time is t = 5.0 ns and if the maximum time value in the table is tmax = 4.0 ns, then fe is
evaluated at 1.0 ns. If you want to apply a single electric-field pulse with zero fields thereafter,
be sure that the final entry in the table is of the form

tmax 0.0

where tmax is larger than the longest particle transit time.

MODFUNC E > Function
MODFUNC(E) > 10.0 + cos(3.1416*$t/25.6)
Define a modulation function for electric field values from a mathematical expression. The
symbol > designates that a function string occupies the remainder of the line. The function
may be up to 230 characters in length and follows the format described below. The function
defines a variation in time, f(t). The parser uses the Perl standard for the time variable: $t
stands for t.
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Trak incorporates a flexible and robust algebraic function interpreter. A function is a string
(up to 230 characters) that may include the following entities:

• The time variable $t.

• Real and/or integer numbers in any valid format (e.g., 3.1415, 476, 1.367E23, 6.25E-02,
8.92E+04,... ). Integers are converted to real numbers for evaluation.

• Binary operations: + (addition), - (subtraction), * (multiplication), / (division) and ∧
(exponentiation).

• Functions: abs (absolute value), sin (sine), cos (cosine), tan (tangent), ln (normal
logarithm), log (base 10 logorithm), exp (normal exponent) and sqt (square root).

• Up to 20 sets of parentheses to any depth.

• Any number of space delimiters.

The parser conforms to the standard algebraic rules and features comprehensive error checking.
Errors may include unbalanced parentheses, unrecognized characters and sequential binary
operations. To illustrate a valid example, the expression

1 - exp(-1.0*(($t^2)/24))

corresponds to

1− exp

[

−
(

t2

24

)]

. (8)

CHANGEPOT RegNo PotNew
CHANGEPOT(6) = 25000.0
This command can be used to change the potential of a individual electrode. The quantity
RegNo (integer) corresponds to the region number defined in Mesh. The region must have the
fixed-potential property. The quantity PotNew (real) is the new value of potential (in volts).
You can include multiple ChangePot commands in the file. After all electrode values are set, the
program performs a relaxation operation to correct values of potential at intervening variable
points.

Note: If you modify the electric field solution with the EMult parameter, Shift command or
ChangePot command, be careful when creating plots. If you load the original applied field, the
field display will not correspond to fields used to compute the particle orbits. Use the EDump
command in the Diagnostics section to make a record of the modified electric field.
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6.3 Controlling electric field recalculation

The following commands control the iterative procedure used to update the electric field so-
lution. Updates are required if the ChangePot command appears or if effects of beam space
charge must be included (SCharge, RelBeam, FEmit and Plasma tracking modes).

MAXCYCLE MaxCy
MAXCYCLE = 2500
The integer quantityMaxCycle is the maximum number of iteration cycles in the matrix solution
for the field. Larger values usually give higher accuracy. The default values are MaxCycle =
2500 for initial adjustments in response to the ChangePot command and MaxCycle = 250 for
field relaxations on each tracking cycle in the SCharge, RelBeam, FEmit and Plasma tracking
modes

OMEGA Omega
OMEGA = 1.95
The quantity Omega is the successive over-relaxation factor for the electric field solution. Assign
a value in the range 0.0 to 2.0. Values close to 2.0 usually give faster convergence. Lower the
parameter if the solution fails to converge. If the Omega command does not appear, Trak uses
default values determined by the Chebyshev prescription.

RESTARGET = ResTarget
RESTARGET = 1.0E-8
The residual is the relative error in the electric field solution and should approach a small
value compared to unity. The electric field relaxation terminates if the residual falls below the
quantity ResTarget (real) or if the number of relaxation cycles exceeds MaxCy. The default
value is ResTarget = 1.0× 10−7.
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7 Magnetic field input and control

7.1 Loading PerMag solutions

The commands to load and to modify magnetic field solutions created by PerMag are similar
to those used for electric field files.

BFILE: FileName [BMult]
BFILE = MLENS.POU (1.4)
This command loads a magnetic field solution created with PerMag. The quantity FileName
is the full name of the file (i.e.,SOLENOID.POU). The optional real-number parameter BMult is
a global field scaling factor. Values of vector potential at all nodes are multiplied by BMult
when they are loaded into the program. This factor is useful if you want to investigate scaling
with applied magnetic field without regenerating the PerMag solution. The solution file must
be available in the working directory. The z axis in the field solution corresponds to the z axis
for particle tracking. A solution with cylindrical symmetry has non-zero field components Bz

and Br, while the components from a planar solution are Bx and By.

SHIFT B ZBShift
SHIFT(B) = 0.05
The Shift command with the key symbol B moves nodes in the magnetic field mesh along the
x direction (planar) or z direction. Enter the real-number parameter ZBShift in the units set
by the DUnit command.

MODFUNC B TABLE FileName
MODFUNC(B,TABLE) = SlowRise.PLS
MODFUNC B > Function
MODFUNC(B) > 0.566 + sin(($t + 5.0E-8)/1.2E-7)
The ModFunc command with the key symbol B adds time variations to magnetic fields. Mod-
ulation functions were described in Sect. 6.2. The capability may be applied only in the Track
tracking mode.

You should note the following facts about time variations of magnetic fields:

• The modulation function is applied to the total magnetic field calculated from all sources.

• Trak simply multiplies static field values by the modulation function and makes no checks
that the resulting time-dependent fields approximate a solution to Maxwell’s equations.
You must ensure that the field values are physically valid.
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Table 4: Example of a tabular listing of Bz(0, z)

* Table from SOL_LENS.BOU

* z Bz

* ======================

SYMMETRY: Cylin

-9.000E+00 4.421E-06

-8.852E+00 5.926E-05

-8.703E+00 1.173E-04

-8.555E+00 1.780E-04

...

9.258E+00 1.014E-04

9.406E+00 7.838E-05

9.555E+00 5.670E-05

9.703E+00 3.685E-05

9.852E+00 1.767E-05

1.000E+01 7.111E-11

ENDFILE

7.2 Alternate magnetic field sources

In contrast to electric fields, Trak can combine several sources of magnetic fields. The field
components are additive when multiple sources are defined.

BTABLE = FileName Zoff Zmult Boff Bmult
BTABLE = Bucking.DAT (2.0, 1.0, 0.0, 300.0)
Trak can derive fields from expansions based on a table of values of the on-axis magnetic field in
both planar and cylindrical geometries. The string parameter FileName is the full name of a file
with the formal described below. Optionally, you may supply four real numbers as parameters
in the command: Zoff, ZMult, Boff and Bmult. The parameters modify table values entered in
the program according to

zprog = Zmult ztab + Zoff , (9)

Bzprog = Bmult Bztab + Boff . (10)

Table 4 shows an example of a magnetic table . The table may contain comment lines,
data lines, an EndFile command and a Symmetry command. The Symmetry command must
be the first non-comment line in the file and has the parameters Cylin or Rect. In the Cylin
option, the data lines contain values of z and Bz(0, z). In the Rect option enter x and Bx(0, x).
The adjusted values of z should be in the current spatial units defined by DUnit and Bz(0, z)
should be in tesla. The file may contain up to 256 data and must terminate with the EndFile
command.

Note: Trak uses cubic spline interpolation to analyze the on-axis magnetic field. The method
supplies only first and second derivatives. Therefore, the quantities Br(r, z) and By(y, x) vary
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linearly in r or y. You must use a finite-element magnetic field solution to investigate effects of
non-linear field variations.

BUNI = Bx0 By0 Bz0
BUNI = (0.25E-4 0.0 0.0)
This command defines spatially-uniform magnetic field components. The feature could be used,
for example, to simulate the effects of the earth’s magnetic field on an electro-optical device.
Enter magnetic field values in tesla. Note that uniform field components may be used only in
the Track tracking mode.

BTHETA AxisCurr RWire
BTHETA = 1200.0 (0.001)
This command adds a toroidal magnetic field generated by an on-axis wire. One application of
the feature is modeling wire transport of an intense electron beam. The field is uniform in z.
The quantity AxisCurr is the wire current in amperes. Use a negative value for a current in
the -z direction. The quantity RWire is the wire radius in units defined by DUnit. The wire
radius does not affect the field calculation. It is used to estimate particle losses on the wire.
An orbit stops if it reaches a radius less than RWire.
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8 Single-particle tracking

8.1 Command functions in the Track mode

In this chapter we proceed to commands that may appear in the Particles section of the input
script under the Track mode:

PARTICLES TRACK

...

(Commands)

...

END

In this mode Trak calculates orbits in the single-particle limit. The term implies that the
fields created by the particles are negligible compared to the applied fields (i.e., low-current
beams). In this case, each particle can be treated independently and the calculation of orbits is a
straightforward process. Allowed commands in the Particles Track section serve five functions:

• Set starting points for particle orbits.

• Control orbit integrations.

• Define region material properties relevant to orbit tracking.

• Set conditions for orbit stopping.

• Control diagnostic listings that can be generated during orbit integrations.

Many of the commands in the last four categories appear in all particle and field-line tracking
modes.

8.2 Starting particles from a list

The simplest way to start particles in the Track mode is through list input. Here you specify the
species, kinetic energy, start position and direction of from 1 to 20000 particles. Two commands
are used for list input:

PLIST
This command signals that a list of particle starting parameters follows in the control script.

The following example illustrates a standard particle list:
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PLIST

* Mass Chrg Eng x y z px py pz

* ======================================================

0.0 -1.0 0.7399E6 0.1 0.0 -8.0 0.00 0.00 1.00

0.0 -1.0 0.7399E6 0.2 0.0 -9.0 0.00 0.00 1.00

0.0 -1.0 0.7399E6 0.3 0.0 -9.0 0.00 0.00 1.00

0.0 -1.0 0.7399E6 0.4 0.0 -9.0 0.00 0.00 1.00

0.0 -1.0 0.7399E6 0.5 0.0 -9.0 0.00 0.00 1.00

0.0 -1.0 0.7399E6 0.6 0.0 -9.0 0.00 0.00 1.00

0.0 -1.0 0.7399E6 0.7 0.0 -9.0 0.00 0.00 1.00

0.0 -1.0 0.7399E6 0.8 0.0 -9.0 0.00 0.00 1.00

0.0 -1.0 0.7399E6 0.9 0.0 -9.0 0.00 0.00 1.00

0.0 -1.0 0.7399E6 1.0 0.0 -9.0 0.00 0.00 1.00

0.0 -1.0 0.7399E6 1.1 0.0 -9.0 0.00 0.00 1.00

0.0 -1.0 0.7399E6 1.2 0.0 -9.0 0.00 0.00 1.00

0.0 -1.0 0.7399E6 1.3 0.0 -9.0 0.00 0.00 1.00

0.0 -1.0 0.7399E6 1.4 0.0 -9.0 0.00 0.00 1.00

0.0 -1.0 0.7399E6 1.5 0.0 -9.0 0.00 0.00 1.00

END

The maximum number of lines is 20000. Comment lines (starting with an asterisk) may be
included. Each data line contains nine real numbers to represent the following quantities:

• Mass. The particle mass in AMU (one atomic mass unit corresponds to 1.660538782 ×
10−27 kg). An entry of 1.0073 designates a proton. If 0.0 appears in the column, the
program inserts the value for an electron. A run in the Track mode may contain particles
with different values of Mass and Charge.

• Charge. The particle charge in units of e (1.60210× 10−19 coulomb). An ion has charge
+1.0 and an electron has charge -1.0.

• Energy. The initial particle energy in eV (1 electron volt = 1.60210× 10−19 joules).

• Position. The particle position (x,y,z) in units set by the current value of DUnit.

• Direction. Normalized momentum fractions (ux,uy,uz) that give the direction of particle
motion. Here, ux = px/ptotal. Trak will normalize the numbers; therefore, the sum of the
squares of the components need not equal to unity. To represent an initially-stationary
particle, set Energy = 0.0 and ux = uy = uz = 1.0.

The list must terminate with an End command.

PFILE = FPrefix
PFILE = Run01
Trak can read particle starting point information from a text file rather than from the control
script. The parameter FPrefix is the prefix of a file with a name of the form FPREFIX.PRT

in the current directory. The file contains from 1 to 20000 particle data lines in the format
described above terminated by an End command. Lines may incorporate any of the standard
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TriComp delimiters including spaces and tabs. The file may include comment lines (beginning
with an asterisk) and text in any formal after the End command.

You can prepare standard particle files (FPrefix.PRT) with text editors, spreadsheets or
your own programs. Output PRT files from Trak may be used as input to a subsequent run.
Files of high-energy electrons may be transferred to the GamBet Monte Carlo code. It is
also possible to generate files automatically to represent a variety of distributions using the
GenDist utility program. GenDist can also read PRT files created by Trak to generate
statistical analysis and distribution plots. Finally, you can use GenDist to filter distributions
to remove unwanted particles.

8.3 Starting particles from an emission surface

Emission surfaces are critical to the operation of Trak in the SCharge, RelBeam, FEmit and
Plasma tracking modes. Emission surfaces are useful in the Track mode for a specific appli-
cation: generation of a distribution of particles with zero kinetic energy from electrodes or
surfaces of arbitrary shape. Emission surfaces can be employed only in calculations that in-
clude an electric field. In a pure magnetic field, particles with zero kinetic energy would simply
remain at the same position.

This section addresses the following questions:

• What is an emission surface?

• How do you create an emission surface in Mesh?

• How does Trak identify an emission surface and generate particles?

• How can you control emission surfaces through Trak commands?

An emission surface is simply a contiguous line region in the electric field mesh. To review,
in the Mesh program a line region is one that does not have the Fill keyword in the Region
command. In this case Mesh assigns the region number to nodes along the lines and arcs that
constitute the boundary, but the program does not change the identity of bordering elements
(Fig. 18). A line region need not outline a closed volume. In the SCharge, RelBeam and FEmit
modes, the line region must be on the surface of a fixed-potential filled region so that Trak

can apply the correct emission physics. We can envision that the line region paints a portion
of the electrode surface to define the area of emission. Emission surfaces are more flexible in
the Track mode - the line region may be on the surface of an electrode or within the volumes
of dielectric and vacuum regions. If the line region is on the surface of an electrode, set it to
the fixed-potential condition in EStat and assign the same potential as the electrode. With
these settings the presence of the emission surface will not perturb the electric field solution.
Similarly, a line region in a dielectric volume should be assigned the same value of relative
dielectric constant ǫr.

If region number NReg is defined as an emission region, Trak searches the mesh and collects
all nodes with that number. The program then creates a list of emission facets: element sides
that connect two emission nodes (Fig. 18). Trak attempts to place the facets in a logical
connected order starting from the node nearest the axis and then checks that the facets form a
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Figure 18: Definition of an emission surface on a conformal triangular mesh.

contiguous set. If we specify that one particle should be created per segment, the code finds the
midpoint of each facet. If the facet has dielectric elements on both sides (i.e., the electric field at
the midpoint is non-zero), the location is used as the starting point for the particle orbit. If one
element has the fixed-potential condition, the code moves the emission point slightly into the
dielectric element for a valid field interpolation. Trak issues an error message if both elements
adjacent to an emission facet are part of a fixed-potential region. To create multiple particles
per facet, the code first divides each facet into a number of segments and then starts particles
from the midpoints of the segments. Emission surfaces can have arbitrary shape; therefore,
emission points may not be uniformly spaced.

The following commands control emission surfaces in the Track mode.

EMIT NReg Mass Charge NPerSeg
EMIT(5) = (0.0, -1.0, 3)
This command states that nodes with region number NReg constitute an emission surface. The
real number parameters Mass and Charge give the mass and charge of the particles that will be
created. Enter the mass in AMU. If 0.0 appears in the column, the program inserts the value
for an electron. The quantity Charge is the particle charge in units of fundamental charge. An
ion has charge +1.0 and an electron has charge -1.0. Note that only one particle species can be
created on an emission surface. You can define several emission surfaces in a run, each with a
different particle species. The final integer parameter, NPerSeg, is the number of segments per
facet. For example, the choice NPerSeg = 3 instructs the code to create three particle orbits
per facet.
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START NReg XStart YStart
START NReg ZStart RStart
START(5) = (0.0, 5.0)
In processing an emission surface Trak must start with a node at the end of the line region to
arrange the facets properly. Sometimes the end point may not be the point closest to the axis,
or there may be an ambiguity (such as a horizontal line). The code issues an error message if
facet ordering fails. You can correct the problem by actively setting the endpoint of the line
region. The integer parameter NReg is the region number of surface. Enter the coordinates of
a point close to the end in units set by the current value of DUnit. To fix problems, note that
Trak records information on the selection of facets and the ordering procedure in the listing file
FPrefix.TLS.

8.4 Controlling orbit integrations

The following commands control the numerical solution of particle orbits.

DT Dt
DT = 1.0E-12
This command sets the integration time step (in seconds). Generally, the quantity Dt should
be less than the minimum time it takes for a particle to cross an element. Lower values give
higher accuracy but extend the run time. If the command does not appear, Trak makes a guess
based on estimates of the minimum element size and maximum particle velocity. The velocity
is determined by checking the initial kinetic energies and/or the maximum change in potential
energy in the solution space. In solutions with a magnetic field, it is essential that the time
step is much smaller than the gyration period:

∆t ≪ 2π

ωg

=
2πγm0

qB
. (11)

In Eq. 11, B is the maximum value of magnetic flux density. The particle has relativistic energy
factor γ, charge q and rest mass m0. In solutions with strong magnetic fields, you should always
set Dt manually, ensuring that it satisfies Eq. 11.

DT DTRef MASS
DT = 2.3E-8 (MASS)
This form of the Dt command includes the keyword Mass. The form must be used whenever
a simulation contains particles with different masses. The quantity DtRef is a reference time
step for particles with a mass of 1.0 AMU (atomic mass unit). The actual time step used for a
particle orbit is given by

∆t =
∆tref√
m0

, (12)

where m0 is the particle rest mass in AMU. Therefore in a mixed simulation with protons and
electrons the time step for electron orbits will be about 1/43 of the time step used for the
protons. As an example, consider the calculation of electron extraction and ion back-flow in a
gun with 250 kV applied voltage. Suppose the minimum element size is 1.0 mm. The maximum
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velocity of a proton would be 6.92 × 106 m/s. Therefore, we set ∆tref = 0.001/(6.92 × 106 =
1.44× 10−10 seconds.

TMAX TMax
TMAX = 3.0E-9
This command sets the maximum duration (elapsed time) of orbits. Enter TMax in seconds.
A common use of the command is to prevent infinite calculations in a system with closed
orbits. In the event an orbit exceeds the maximum duration, Trak determines its final position
and momentum by an accurate interpolation to TMax. This feature is useful for analyzing
isochronous systems. The default value is Tmax = ∞.

DMAX DMax
DMAX = 15.0
This command sets a maximum total length for orbits. Enter the distance in units set by DUnit.
When the distance exceeds Dmax, the code determines the stopping point by interpolation so
that all orbits have almost exactly the same length. This command gives an alternate way to
prevent infinite orbits. The default value is Dmax = ∞.

NTRACKMAX = NTrackMax
NTRACKMAX = 400
This command sets the maximum number of integration steps. Its main use is to prevent
infinite orbits. The default value is NTrackMax = 20, 000.

The following two commands set specialized controls – it is unlikely that you will need to
use them.

INTERP E [LIN,LSQ]
INTERP B [LIN,LSQ]
INTERP BB [LIN, LSQ]
INTERP(B) = LIN
By default Trak uses a second-order least-squares fit procedure to calculate electric and applied
magnetic field during an integration (LSQ option). This setting should be suitable for almost all
runs. The LIN option activates a simple linear routine that returns a uniform value of electric
field, applied magnetic field or beam-generated magnetic field in each element. Although it
yields reduced accuracy, the LIN option may be useful if the solution volume includes small
enclosed regions. In a cul de sac, the program may have difficulty locating enough points to
make the LSQ fit.

NSEARCH E NSearchE
NSEARCH B NSearchB
NSEARCH(E) = 3
Trak must identify elements in the electric and/or magnetic field meshes occupied by parti-
cles during orbit integrations. The procedure is challenging on the conformal meshes used in
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TriComp because there is no unique relationship between a node’s index and its position.
Therefore it is necessary to check individual elements. Furthermore, separate searches must
be performed for the calculations of electric and magnetic fields because they are defined on
independent meshes. To speed the process Trak uses a fast search procedure. The elements
occupied by the orbit starting point are located by full searches on each mesh. In subsequent
steps, local searches are made in the vicinity of the last occupied element. The parameter
NSearchE governs the width of the local search region in the electric field mesh. For a good
choice of Dt, the code defaults of NSearchE = NSearchB = 6 are sufficient. You can speed
up integrations by choosing a smaller value. Larger values may be necessary if a mesh contains
regions with very small elements.

8.5 Stopping conditions

The implementation of precise stopping conditions is a critical component of a charged-particle
simulation. For example, you may want to determine whether a particle strikes a detector and
then to find the exact particle parameters at the impact point. Similarly, in characterizing a
lens we want a precise prediction of beam properties in a plane normal to the axis. This section
describes the wide variety of available methods to stop particles in Trak.

We shall first address orbit termination at region surfaces in the finite-element meshes.
Regions in the electric and/or magnetic field meshes can be assigned one of three properties
that affect particle transport.

• Vacuum. Particles move unimpeded through Vacuum elements.

• Material. Particles stop when they enter a Material element.

• Secondary. This feature applies only to electron tracking. Electrons are re-emitted when
they enter a Secondary element. The process of secondary emission is described in detail
in Chap. 14.

When a particle enters a Material or Secondary element, Trak employs a sophisticated proce-
dure to project the orbit back to the entry surface to find the final or re-emission position.

Trak makes default assignments of region material properties. In the electric mesh, all
elements with ǫr = 1.0 are set as Vacuum, and all elements with fixed potential or ǫr 6= 1.0
are set as Material. In the magnetic mesh elements with µr = 1.0 are initialized as Vacuum,
and elements with fixed vector potential or µr 6= 1.0 are Material. You can use the following
commands to change the assignments.

VACUUM E RegNo
VACUUM(E) = 2
VACUUM B RegNo
VACUUM(B) = 5
These commands set all elements with region number RegNo in the electric or magnetic mesh
to the Vacuum condition.
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MATERIAL E RegNo
MATERIAL(E) = 4
MATERIAL B RegNo
MATERIAL(B) = 1
This command sets all elements with region number RegNo in the electric or magnetic mesh to
the Material condition.

SECONDARY E RegNo DeltaMax0 EngMax0
SECONDARY(E) = 8 2.35 300.0
SECONDARY B RegNo DeltaMax0 EngMax0
SECONDARY(B) = 3 1.2 250.0
This command sets all elements with region number RegNo in the electric or magnetic mesh to
the Secondary condition. Chapter 14 discusses the properties of secondary emission materials
and the interpretations of the additional parameters.

The next set of commands controls the definition of special planes in the solution space to
stop, to diagnose or to reflect particles. Normally the location of the plane should be inside
the common volume defined by the electric and/or magnetic field meshes. If the script contains
the Boundary command in the Fields section, the planes may be located anywhere inside the
specified boundary area.

STOP [UP,DOWN] [X,Y,Z,R] StopPosition
STOP(UP, X) = 5.50
Particle orbits terminate when they cross a stopping plane. Trak projects the orbit back to
the plane to find precise values of final position, momentum, total distance and elapsed time.

The Stop command has three parameters with the following options:

• UP, DOWN. The string parameter sets the direction of particle motion along the axis
normal to the stopping plane.

• X, Y, Z, R. The string parameter specifies the axis normal to the stopping plane. Note
that the R option can function in simulations with both cylindrical and planar symmetry.
In the latter case, the program records parameters when the particle crosses a circular
boundary in the x-y plane.

• StopPosition. The real-number parameter is the position of the stopping plane along the
normal axis. Enter the value in units set by the current value of DUnit.

As an example, suppose a source at z = 0.0 creates electrons trapped in an axial magnetic field.
We want to stop electrons if they reach an axial displacement of ±5.0 cm from the source. In
this case, we include the commands

STOP (UP, Z) = 5.0

STOP (DOWN, Z) = -5.0
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DIAG [UP,DOWN] [X,Y,Z,R] DiagPosition
DIAG (Up, X) = 4.54
Trak records a set of final particle parameters that are used in the Diagnostic commands
discussed in Chap. 15. The values may also be recorded in a standard particle file using the
PartFile command. Sometimes it is useful to record these parameters and then to continue
the particle orbits. For example, suppose you want to find the distribution at the waist point
of a high-current beam. If the particles stopped at the waist, the electrostatic fields would
be incorrect because there was no downstream space-charge assignment. In this case you
can define a Diag plane. When a particle crosses such a plane, Trak records interpolated
particle parameters in the plane and continues the orbit until a stop condition occurs. Allowed
parameters are the same as those for the Stop command. You can define multiple Diag planes
- note that parameters are recorded at the last plane encountered.

RECORD [UP,DOWN] [X,Y,Z,R] RP1 RP2 ... RPN
RECORD (Up, Z) = 19.0 20.0 21.0
With this command you can record precise particle parameters at a number of positions normal
to an axis. There are three differences from the Diag command: 1) you can define up to 10
record planes, 2) the information is transferred to multiple PRT files during the orbit integrations
and is not available for operations with commands of the Diagnostics section and 3) only a single
Record command may appear in the script. The second and third string parameters specify the
direction of particle motion and the axis for normal planes. In cylindrical simulations the most
common choice would be UP Z. Up to 10 real-number parameters may follow giving the positions
along the axis for diagnostics. If there are three entries, Trak opens three files with names of
the form RunName01.PRT, RunName02.PRT and RunName03.PRT and records values of energy,
position and momentum as each particle crosses the corresponding planes. In simulations of
the type SCcharge, RelBeam, FEmit and Plasma, data are recorded only on the final cycle.

The following rules apply to the Record command:

• The file may contain only one Record command. Therefore, all planes are normal to a
single axis.

• The positions RP1, RP2, ...RPN must appear in order of increasing value for the UP
option or decreasing value for the DOWN option.

• The command must contain between 1 and 10 position values.

• For the UP option, particles with starting positions less than RP1 will not be recorded
in any of the files. For the DOWN option, a particle must start at a position above RP1
to be recorded.

• The recording process may not function correctly if the spacing between planes is less
than the particle integration step size.
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REFLECT [UP,DOWN] [X,Y,Z,R] ReflectPosition
REFLECT (Down, Y) = 0.0
Reflection planes are useful to simulate periodic systems with symmetry in both the fields and
particle motions. When a particle crosses a reflection plane, Trak projects its position back to
the plane and reverses its momentum normal to the plane. Allowed parameters are the same
as those for the Stop and Diag commands. Multiple Reflect, Diag and Stop commands may
appear in a control script.

8.6 Orbit listings

The final three commands control information that can be recorded during orbit tracking.

LISTON NStep [P,E,B]
LISTON (2, B)
This command initiates records of orbits in the listing file (RUNNAME.TLS). This information is
more detailed than the simple coordinate data recorded in the plot file (RUNNAME.TOU). The list
option is normally deactivated because complex runs could generate huge listings. The optional
parameter NStep is the number of integration steps between records. The optional key symbol
P, E or B determines the type of information recorded. Under the P option (the default) the
data lines contain the following quantities: step number, elapsed time, coordinates (in units
set by the current value of DUnit), total distance, and normalized momentum components
(pnorm = p/m0c). In the field modes (E and B) Trak records coordinates of the integration
points and the calculated field components. An extract from a file is shown in Table 5. The
ListOn command is valuable for debugging runs and checking field interpolations along particle
trajectories.

ORBINFO
Use the OrbInfo command on those occasions when particles mysteriously stop or refuse to
move. When the command is issued Trak writes a record in the listing file of the orbit termi-
nation status. Table 6 shows an example.

PLOTOFF
This command suppresses generation of the plot file, RUNNAME.TOU. This feature saves disk
space and time if you are making a run with a large number of particles and you are interested
only in the starting and ending parameters.

PLOTSKIP NPlotSkip [NPartSkip]
Trajectories with a large number of steps or distributions with a large number of particles may
lead to very large plot files. Use this command to control the size of the TOU file. The parameter
NPlotSkip is the number of integration steps per plot vector. The default is NPartP lot = 5.
Use a larger number if the time step is very small (for instance, it a strong magnetic field).
Use NPartP lot = 1 to make a detailed record of trajectories in the TOU file. The optional
parameter NPartSkip limits the number of trajectories included in the TOU file. For example,
if NPartSkip = 5, only the trajectories for particles 5, 10, 15, ... are included. The default is
NPartSkip = 1 (all trajectories plotted).
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Table 5: Extract of orbit list under the E option

Tracking particle number 2

NTrack t x y z

======================================================

0 0.0000E+00 5.0000E-02 0.0000E+00 -2.4990E+00

5 4.0997E-11 5.0012E-02 0.0000E+00 -2.2599E+00

10 8.1993E-11 5.0105E-02 0.0000E+00 -2.0223E+00

15 1.2299E-10 5.0400E-02 0.0000E+00 -1.7873E+00

20 1.6399E-10 5.1073E-02 0.0000E+00 -1.5574E+00

25 2.0498E-10 5.2292E-02 0.0000E+00 -1.3364E+00

30 2.4598E-10 5.3994E-02 0.0000E+00 -1.1286E+00

...

Dist Ex Ey Ez

================================================

0.0000E+00 -9.0412E+00 0.0000E+00 3.8246E+04

2.3908E-01 -2.7417E+03 0.0000E+00 5.0646E+04

4.7669E-01 -6.7280E+03 0.0000E+00 9.1283E+04

7.1166E-01 -1.2867E+04 0.0000E+00 1.7572E+05

9.4158E-01 -1.9363E+04 0.0000E+00 3.1533E+05

1.1626E+00 -1.7718E+04 0.0000E+00 4.7408E+05

1.3704E+00 -2.4400E+03 0.0000E+00 5.5682E+05

...

Table 6: Example of a termination statement

Termination status of particle number 2

Orbit outside the boundary of the electric field solution

Final position: [ 5.4806E-03, 0.0000E+00, 3.9995E+00]

Final momentum: [ -2.0874E-03, 0.0000E+00, 1.9884E-01]

Final kinetic energy: 1.0006E+04
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8.7 Particle starting times

In Track mode runs that include modulations, the default condition is that all particles start
at t = 0.0 s. You can specify individual particle start times relative to the modulation function
by adding a column to particle lists or files. In this case, the data lines have the form:

PLIST

* Mass Chrg Eng x y z px py pz ts

* ==============================================================

0.0 -1.0 0.7399E6 0.1 0.0 -8.0 0.00 0.00 1.00 0.0E-6

0.0 -1.0 0.7399E6 0.2 0.0 -9.0 0.00 0.00 1.00 0.1E-6

0.0 -1.0 0.7399E6 0.3 0.0 -9.0 0.00 0.00 1.00 0.2E-6

0.0 -1.0 0.7399E6 0.4 0.0 -9.0 0.00 0.00 1.00 0.3E-6

0.0 -1.0 0.7399E6 0.5 0.0 -9.0 0.00 0.00 1.00 0.4E-6

...

END

Specify the start time in units of seconds. If an entry is missing, Trak takes the default ts = 0.0
s. When a start time is given, the modulation function is evaluated during an orbit trace as:

fe(t+ ts), fb(t+ ts), (13)

where t is the elapsed time from the initiation of the particle trace and ts is the start time.
The adjusted time is recorded in particle lists in the TLS file and in the TOU file, Note that any
particles that start from an emission surface have ts = 0.0 s.
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Figure 19: Field lines generated from an emission surface on the left electrode.

9 Tracking electric-field lines

9.1 Script commands

This chapter reviews tracing of electric field lines in EStat solutions. Trak employs advanced
interpolation techniques to find precise intersection points of field lines with the solution bound-
ary or electrode surfaces. This section discusses control commands for the mode, while the
second section describes special features for application to ion mobility mass spectrometry.

Allowed commands in the Particles Fline section serve three functions:

• Set starting points for traces.

• Control the trace integration.

• Specify listing-file diagnostics.

We begin with commands to initiate field line traces.

FLIST
This command signals that a list of starting positions follows in the control script. Table 7
shows an example of a complete FList structure. The maximum number of lines is 20000. Each
data line contains four real numbers. The first three (Xstart, Y start, Zstart) give the initial
position in units set by the current value of DUnit. To ensure a valid initial field interpolation,
the point must not be inside a fixed-potential element. To avoid errors, make sure that the
starting positions are displaced a small distance into the dielectric region from the electrode
surface. The quantity Polarity determines the direction of integration. It may assume the
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Table 7: Field line list structure

FLIST

* Xstart Ystart Zstart Polarity

* ===============================

0.9999 0.0000 -0.50 -1.00

0.9999 0.0000 -0.75 -1.00

0.9999 0.0000 -1.00 -1.00

0.9999 0.0000 -1.25 -1.00

0.9999 0.0000 -1.50 -1.00

0.9999 0.0000 -1.75 -1.00

0.9999 0.0000 -2.00 -1.00

0.9999 0.0000 -2.25 -1.00

0.9999 0.0000 -2.50 -1.00

0.9999 0.0000 -2.75 -1.00

END

values ±1.0. For Polarity = +1.0, the integration proceeds along the direction of positive
electric field (i.e., from positive to negative potential). The End command signals the end of
the list.

FFILE FPrefix
FFILE = PReactor
Trak can read field-line starting points from a file rather than the control script. This feature
is useful if there are a large number of starting points or if you want to use the same starting
points in several different solutions. The parameter FPrefix is the prefix of a file with a name
of the form FPREFIX.FLD in the current directory. Data lines in the file have the same format
as those of the FList structure. The file list must terminate with a line containing the End
command.

You can also start field lines from emission surfaces using the Emit command. This feature
is particularly useful for field lines because we often want to find the destinations of lines that
start from different positions on an electrode. The line regions that define emission surfaces
can be placed on an electrode or they may follow arbitrary paths in a dielectric region. If an
emission segment is on an electrode, Trak picks a starting point slightly displaced into the
adjoining dielectric element. The mechanics of identifying an emission surface was described in
Sect. 8.3.

EMIT NReg NPerSeg [Polarity]
EMIT(5) 3 -1.0
This command states that facets connecting nodes with region number NReg constitute an
emission surface. The integer parameter NPerSeg is the number of segments per facet. The
quantity Polarity (equal to ±1.0 determines the direction of integration. The default is +1.0.
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START NReg XStart YStart
START(5) = (0.0, 5.0) Trak orders emission facets in a continuous line starting from the
end. By default, the program starts from the node closest to the axis (ymin or rmin). If there is
any ambiguity, use this command to set the endpoint of the emission surface associated with
region NReg.

The following command controls the line integral:

DS Ds
DS = 0.015
Set the spatial step size for field line integrations. Enter the distance Ds in units set by the
current value of DUnit. Smaller values of Ds give higher accuracy. If the command does not
appear, Trak picks a default equal to the diagonal length of the electrostatic solution space
divided by 500.0.

Several commands introduced in Chap. 8 for integration control in the Track mode may also
be applied:

DMAX = DMax
NTRACKMAX = NTrackMax
NSEARCH E NSearch
INTERP E [LIN,LSQ]

Field lines terminate if they leave the volume of the electric field solution or enter a fixed-
potential region. You can define additional stopping conditions with the following commands:

STOP [UP,DOWN] [X,Y,Z,R] StopPosition
DIAG [UP,DOWN] [X,Y,Z,R] DiagPosition
REFLECT [UP,DOWN] [X,Y,Z,R] ReflectPosition

Finally, the following commands can be used to write diagnostic information to the listing file.

LISTON NStep
LISTON (2)
In contrast to the Track mode, the listing file data lines in the FLine mode always contain the
point coordinates and components of the calculated electric field. The key symbols P , E and
B are ignored.

ORBINFO
This command gives a record if the termination status of the field line. To gage the accuracy of
the integration, Trak also records the difference in electrostatic potential between the starting
and stopping points compared to the line integral − ∫ E · dl. Table 8 shows an example of a
termination listing.
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Table 8: Termination listing for an electric field line

Termination status of field line number 3

Point inside fixed potential region

Final position: [ 1.0000E+00, 0.0000E+00, 1.0001E+00]

Accuracy check

Phi(Initial): -5.0000E+03

Phi(Final): 5.0000E+03

Phi(Final)-Phi(Initial): 1.0000E+04

Integral -Edl: 9.9991E+03

Figure 20: Principle of the ion-mobility time-of-flight spectrometer.

58



9.2 Ion-mobility spectrometry

Trak includes a useful feature to aid in the design of time-of-flight ion-mobility spectrometers.
Figure 20 shows the basic principle. The material to be analyzed is ionized in a gas background
(typically air at atmospheric pressure). A electric field is applied and the ions drift with velocity
vector v = µE, where E is the electric field vector (in V/m) and µ is the mobility (in m2/V-s).
Species with different mobilities separate in transit. With a known electric field distribution,
the time-of-flight to a detector can be used to infer µ.

For reference, the absolute value of mobility µ is related to the reduced mobility µ0 (defined
at standard temperature and pressure) by:

µ = µ0

(

760

P

)(

T + 273.15

273.15

)

. (14)

In Eq. 14, P is the pressure in mm of mercury and T is the temperature in oC.
Because the drifting ions follow lines of E, the tracking capabilities of the FLine mode are

ideal for the application. In addition to calculation of ion trajectories, Trak computes the ion
time-of-flight for a given mobility. The time increment ∆t for an ion to move a distance ∆s is:

∆t =
∆s

|v| =
∆s

µ|E| . (15)

The time-of-flight from point A to point B is therefore:

tAB =
∫ B

A

ds

µ|E| . (16)

While tracing a field line Trak computes the following integral to yield the normalized
transit time:

τAB = µ tAB =
∫ B

A

ds

|E| . (17)

The quantity τ (in m2/V) depends only on the nature of the electric field solution. The
properties of the background gas and ions are contained in µ. Therefore, a knowledge of the
normalized transit time distribution completely characterizes the performance of a detector for
any fill gas or ion species.

Figure 21 shows an example of an ion-mobility spectrometer. An entrance grid, a set of
biased rings and a detector plane create a field that increases in the z direction. The goal is to
capture ions and to compress the distribution to a small-diameter detector. The figure shows
equipotential lines and ion drift orbits (corresponding to electric field lines) with entrance radii
in the range 0.0 ≤ r ≤ 1.2 cm. An orbit with an initial radius of 1.2 cm has radius 0.393 cm
at the detector, a 9.3:1 area compression. If the PartList command appears in the Diagnostics
section for a calculation in the FLine mode, Trak includes the statistical analysis of Table 9
in the listing file. For the example, the average normalized transit time is τavg = 2.68 × 10−6

m2/V. If the ion mobility is µ = 1.36 × 10−4 m2/V-s, the predicted average transit time is
19.7 ms. The dispersion in normalized transit time is ∆τ = 6.03 × 10−8 m2/V. Therefore, we
expect that the field-magnitude and trajectory variations limit the detector resolution to about
R ≥ ∆τ/τavg = 2.25%.
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Figure 21: Ion-mobility spectrometer – electrode geometry and ion orbits.

Table 9: Example – statistical analysis for ion-mobility calculations

Mobility statistics

Number of values: 12

Normalized transit time (Tau = Int(ds/|E|)

Tau (average): 2.67762E-06 (m2/V)

Tau (stddev): 6.02967E-08 (m2/V)

Tau (minimum): 2.61802E-06 (m2/V)

Tau (maximum): 2.80662E-06 (m2/V)

Field line length

D (average): 1.00287E-01 (m)

D (stddev): 3.18367E-04 (m)

D (minimum): 9.99953E-02 (m)

D (maximum): 1.01023E-01 (m)
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10 Space-charge effects and Child-law emission

10.1 List input for high-current beams

The SCharge mode is used to model high-current non-relativistic electron and ion beams. In
this mode Trak calculates beam space-charge density while tracing particle orbits. Electric
fields are then recalculated with the charge contributions of the beam. Several iteration cycles
are necessary to find a self-consistent combination of orbits and fields. You can start particles
from a list or request that Trak create particles on emission surfaces and assign current to
satisfy the Child law (space-charge-limited emission) The data lines of the PList and PFile
commands (discussed in Sect. 8.2) have an extra entry to define the current (or current per
length in planar simulations) of the model particles.

PLIST
The PList command signals that a list of starting points follows in the control script. Each data
line contains ten real numbers representing the following quantities: mass, charge, energy, start
coordinates (x, y, z), direction vector (ux, uy, uz) and current. Except for the final parameter,
the quantities have the same meanings as those discussed for the Track option. In cylindrical
simulations the current of a model particle is distributed over an annular region (extending from
0 to 2π in θ) centered at the particle position r. Enter the particle current in amperes. For an
injected beam of particles uniformly-spaced in radius with uniform current-density, the particle
current should be proportional to ri (the initial particle radius). In planar simulations, enter
the current per length (along z) in units of A/m. Note that the current is always a positive
number. The direction of the current is given by the sign of the quantity charge and the axial
velocity of the particle (vz or vx). Again, the End command terminates the list.

PFILE FPrefix
PFILE = RelInject This command has the same form as the PFile command in the Track
mode. The only difference is the addition of the final quantity current in each data line of the
file.

Note: In planar simulations in the SCharge mode, the x axis must be the direction of average
beam motion. Furthermore, the solution must be symmetric about y = 0.0. In a typical
simulation, you would model only the space y > 0.0 and apply symmetry conditions at y = 0.0
(i.e., the Neumann condition for the electrostatic potential and a reflection condition for the
particles).

10.2 Self-consistent electric field calculations

Self-consistent gun and transport calculations with beam-generated electric fields present a
challenge: particle orbits depend on the electric fields while the fields depend upon the orbits
through the space charge. Trak employs an iterative approach, the ray-tracing technique, to
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solve the boundary-value problem. The program computes particle orbits in the applied electric
fields. The space charge associated with the orbits is then used to find a modified solution of
the Poisson equation. Next, the orbits are recalculated in the new fields. The process continues
over several cycles until the solution converges. The following commands control the cyclic
process.

NCYCLE NCycle
NCYCLE = 15
This command sets the number of orbit-tracking/field-recalculation cycles. The number re-
quired for convergence depends on the nature of the problem. A simulation where the beam-
generated electric field makes a small contribution to the total field may converge in a few cycles.
On the other hand, a simulation where beam fields predominate (i.e., a beam expanding in a
field-free transport region) may require 10-30 cycles. In a multi-cycle run, Trak writes listing
information in response to the ListOn command and entries in the plot file only on the final
cycle. One sign that a solution has converged is that the electric field recalculation requires
fewer than the maximum number of cycles (MaxCycle command).

AVG Avg
AVG = 0.20
When beam-generated fields are strong it is necessary to adjust the beam space-charge gradually
to achieve a convergent solution. The Avg parameter controls the degree of charge deposition.
It has a value between 0.0 and 1.0. On any cycle, the space-charge in an element is given by

qnew = (1.0− Avg)× qold + Avg × qbeam, (18)

where qold is the previous value and qbeam is the value calculated from a sum over orbit traces
on the present cycle. For a small value of Avg you should use larger values of NCycle. For
example, if Avg = 0.15, then about 30 cycles would be required to ensure that the space-charge
density was within 1% of its equilibrium value. The default is Avg = 0.15.

Note: The same averaging factor controls current deposition on the electric field mesh in the
RelBeam tracking mode.

AVG AvgInit NChange AvgFinal
AVG 0.20 10 0.05
This form for the Avg command is useful to aid convergence in solutions with complex electron
orbits that are sensitive to emission conditions (such as pinched-beam diodes). In this case,
high values of Avg give large variations of emitted current between cycles. On the other hand,
large values of NCycle are necessary to ensure convergence with low values of Avg. A good
strategy is to use a relatively high initial value to set up an approximate equilibrium, and then
to reduce Avg for good convergence. In this form of the command, the parameter AvgInit is the
initial value while AvgFinal is the final value that is applied for cycles NCycle ≥ NChange.

For review, the following commands of the Fields section (introduced in Sect. 6.3) control
electric field recalculations during each cycle:
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MAXCYCLE = 2500
RESTARGET = 2.0E-8
OMEGA = 1.95

10.3 Child law emission

In the SCharge mode, emission surfaces represent sources of electrons or ions that operate
at the space-charge limit. As an example, an emission surface could represent a thermionic
cathode when the extracted current density is below the source limit. Trak automatically
creates model particles on the emission surface and assigns current to satisfy the the Child law.
The condition is that the electric field on the surface approaches zero. The numerical method
employed is described in S. Humphries, Numerical modeling of space-charge-limited emission
on a conformal triangular mesh, J. Comp. Phys. 125, 488 (1996) included with the Trak

package. Here we shall give a brief description of the procedure so you can understand the
functions of parameters in the related commands:

• As in the Track and FLine modes, Trak creates a set of emission facets and determines
particle initiation points based on the value of NPerSeg.

• A numerical orbit calculation would not be possible if particles were created on the emis-
sion surface. The Child condition of zero electric field implies that zero-energy particles
would not move, and the calculation would stall.

• To resolve the impasse, Trak creates a generation surface by projecting the particle
initiation points a distance DEmit from the emission surface. Analytic formulas for space-
charge limited flow in a planar gap of width DEmit are employed to find the appropriate
current and kinetic energy to assign to model particles at the generation surface. The
problem of stalled orbits does not occur because the kinetic energy and electric field are
non-zero at the generation surface.

• Trak employs a novel backtracking technique to ensure correct assignment of space charge
in the volume between the emission and generation surfaces. The combination of this
capability with correction factors for curved electrodes ensures high-accuracy solutions
for space-charge-limited flow.

• A program iteration cycle consists of the following operations: 1) create model particles at
the generation surface, 2) assign current and kinetic energy based on the present values of
local electric field, 3) reverse-track the orbits at fixed energy until they strike the emission
surface to set space charge in the gap between the generation and emission surfaces,
4) forward-track the orbits and 5) solve the Poisson equation using the space-charge
associated with the orbits. The code makes extensive records in the file FPrefix.TLS so
you can check the validity of the process.

The following commands control Child-law emission surfaces.
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EMIT(NReg) Mass Charge DEmit [NPerSeg JLimit kTs Ns]
EMIT(4) = (0.0, -1.0, 0.05, 3)
This command identifies the line region NReg as an emission surface. The region must be on
the surface of an electrode (fixed-potential region). The parameters Mass and Charge have
the same meanings as those in the Emit command of the Track mode. Enter the mass in
AMU (atomic mass unit). Trak inserts the value of the electron mass if Mass = 0.0. Enter
the charge of the emitted particles in units of e (i.e., -1.0 for electrons and +1.0 for protons).
The quantity DEmit is the distance from the emission surface to the generation surface. Enter
the value in units set by the current value of DUnit. The integer parameter NPerSeg is the
number of model particles created per facet of the emission surface (default, NPerSeg = 1).
The real-number parameter JLimit (in A/m2) is a source limit for current emission and kTs
(in eV) gives the temperature of the source. The integer Ns is the splitting parameter with
default value Ns = 1. Larger values are useful when Ts > 0.0. A particle is split into Ns
subparticles. Each subparticle carries a fraction 1/Ns of the assigned current and is emitted at
a random angle with a distribution width determined by the source temperature. The purpose
of the splitting parameter is to improve statistics of downstream particle distributions.

Notes on the Emit command

• The parameters NPerSeg, JLimit, kTs and Ns are optional. If they do not appear,
Trak uses default values. If they do appear, they must occupy the correct position in the
list. For example, kTs must be the seventh entry after the Emit command. To set kTs,
you must include values for NPerSeg and JLimit. For space-charge limited emission,
use a large dummy value for JLimit.

• The quantity DEmit should be small enough so that the generation surface closely follows
the contours of the emission surface. On the other hand, the field interpolations necessary
to calculate the Child-law current density will be inaccurate if DEmit is less than the local
element width. As a rule, pick DEmit equal to about 1.5 times the local element width.
It may be necessary to create small elements with Mesh near the emission surface to
achieve a good fit.

• If you set a value for the parameter JLimit, Trak can model mixed space-charge and
source-limited emission. The program calculates the Child value at the generation surface
and projects it back to the emission surface. The program then chooses the smaller of
this value or JLimit. The default value for all emission regions is JLimit = ∞.

• If you set a value for the source temperature kTs, Trak assigns an angular spread to
particles leaving the emission surface. The particles are assumed to have a Maxwell
distribution in transverse velocity. The direction of particle emission is determined from
a unit vector normal to the emission surface and an angular displacement calculated from
the transverse kinetic energy and the longitudinal kinetic energy at the surface. The
default value for all emission regions is kTs = 0.0 eV.

Use the following equation to convert a value of source temperature in oC to electron volts:

kTs(eV) =
Ts(

oC) + 273

11, 594
. (19)
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The probability distribution of transverse velocity v⊥ of particles emitted from a source at
temperature Ts approximates the Maxwell distribution:

f(v⊥)dv⊥ = v⊥

(

m

kTs

)

exp

(

−mv2
⊥

2kTs

)

. (20)

We can rewrite Eq. 20 in terms of the normalized variable

χ =

√

m

2kTs

v⊥, (21)

as

f(χ)dχ = 2χ exp
(

−χ2
)

dχ. (22)

The integral of Eq. 22 gives the cumulative probability, a variable in the range from 0.0 to 1.0:
∫ χ

0
f(χ)dχ = ζ = 1− exp(−χ2). (23)

The procedure in Trak is to generate a random value of ζ and then to find a weighted value of
χ from the inverse of Eq. 23:

χ = − ln(1− ζ)

2
. (24)

The angle of the particle relative to the surface normal is given by

∆θ ∼= v⊥
v0

= χ

√

√

√

√

kTs

Tp

, (25)

where Tp is the kinetic energy (in eV) of the particle at the emission surface. Particles are
emitted with a random-uniform distribution of azimuth about the surface normal vector. Note
that the derivation is valid in the limit that v⊥ ≪ v0. Trak generates an error message if kTs

is too high relative to Tp. The criterion is that the ratio kTs/Tp ≤ 0.40. If you receive the error
message Source temperature too high for the choice of DEmit, either increase DEmit or reduce
Ts. Figure 22 illustrates the effect of source temperature.

RSEED ISeed1 ISeed2 RSEED 8754 662
Set a random seed by supplying two integer values. You can use this command to ensure that a
calculation involving emission with a source temperature generates identical results each time
it is run. If the command does not appear, the program chooses seed values set by the current
clock time to generate statistically independent results for each run.

SUPPRESS SVal1 SVal2 SVal3 ...
SUPPRESS 0.20 0.30 0.40 0.60 0.80 1.00
The current density assigned at the generation surface must be suppressed below the Child-law
value on the first few iteration cycles. Otherwise the initial current based on the applied field
values would be too high and the code could oscillate between high and low current solutions on
subsequent cycles. To aid convergence Trak applies suppression factors on the first few cycles.
The code uses the following default values for space-charge-limited emission:
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Figure 22: Particles generated at an emission surface with source temperature. Outward radial
flow of electrons across a 5000 V gap with kTs = 0.25 eV. Top: equipotential lines and particle
orbits. Bottom: axial phase space plot at the outer boundary. The predicted angular divergence

is ∆θ ∼=
√

kTs/5000 = 0.007.
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NCycle Supression value

1 0.250

2 0.300

3 0.500

4 0.750

5 1.000

6 1.000

7 1.000

8 1.000

9 1.000

10 1.000

For unusual solutions you can set you own values. Enter from 1 to 10 real numbers in the range
0.0 to 1.0. Any undefined values default to 1.0.

10.4 Relativistic mode

In the SCharge mode, Trak does not perform a detailed calculation of beam-generated mag-
netic fields. The mode is therefore not appropriate for simulations of relativistic electron guns.
On the other hand, Trak can find accurate results for certain types of relativistic-beam trans-
port problems using the relativistic approximation. This approach is faster than the complete
calculation under the RelBeam tracking option and may give better accuracy for beams with
γ ≫ 1.0.

To begin, we shall review some relativistic beam physics. Consider a circular paraxial
electron beam traveling along the z axis in free space. The term paraxial implies that: 1)
electrons have about the same axial velocity (vz ∼= βc) and 2) orbits make small angles with
respect to the axis:

r′ = dr/dz ≪ 1.0. (26)

Equation 26 implies that changes in the beam radius r0 take place over axial distances much
greater than r0. Therefore local beam-generated fields are approximately equal to those of an
infinite-length beam.

Suppose the beam carries current I and that the space-charge density is a function of radius,
n(r). The electric and magnetic fields created by the beam can be determined from Poisson’s
equation and Ampere’s law:

Ez
∼= 0.0, (27)

E⊥ = Er(r) = − e

2πǫ0r

∫ r

0
2πr′dr′n(r′), (28)

Bz
∼= 0.0, (29)

B⊥ = Bθ(r) = −eβcµ0

2πr

∫ r

0
2πr′dr′n(r′). (30)

The equations imply that the transverse magnetic force acting on individual electrons is
related to the transverse electric force by
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FB⊥ = −β2 FE⊥. (31)

The quantity β is small compared to unity for non-relativistic beams; therefore, the magnetic
force can usually be neglected. In contrast, the repulsive electric force and attractive magnetic
force are almost balanced for highly relativistic beams (β ∼= 1.0).

The transverse forces of a planar beam also satisfy Eq. 31. In fact, the relationship holds
for paraxial beams of any shape and with any nonuniform distribution of space-charge. The
equation also holds if we include field contributions of perfectly-conducting boundaries whose
dimensions change gradually in the axial direction. We can prove the result by 1) making a
Lorentz transformation by velocity -βc to the average rest frame of the beam, 2) calculating
the electrostatic fields resulting from the stationary distribution of charge, and 3) calculating
transformed electric and magnetic field values in the laboratory frame. This derivation also
shows that because of Lorentz contraction the criteria underlying paraxial beam motion and
the definition of gradual changes in boundary conditions is less stringent for relativistic beams.
If D is the transverse scale size of the system and L is the axial distance for a significant change
in the beam or boundary dimensions, then Eq. 26 holds if

R

γL
≪ 1.0. (32)

where γ is the relativistic energy factor

γ =
1√

1− β2
. (33)

The quantity γ is related to the rest mass m0 and kinetic energy T of the particle by:

γ = 1 +
T

m0c2
. (34)

The theoretical development suggests a strategy to avoid explicit calculations of magnetic
fields for relativistic beams. The total transverse force on particles is related to the electric
force by:

FT⊥ = FE⊥ − FB⊥ = (1− β2) FE⊥ =
FE⊥

γ2
. (35)

We simply calculate the electrostatic force and then divide by γ2 to include the effect of the
magnetic field. The relativistic mode holds under the following conditions:

• Transverse electric fields arise almost entirely from the presence of the beam space and
surrounding conducting boundaries. This condition does not hold in acceleration gaps
where there is a strong applied electric field.

• Beam particles move predominantly in one direction and have approximately the same
axial velocity vz ∼= βc.

• The axial scale length for changes in the transverse dimensions of the beam and surround-
ing boundaries satisfies Eq. 32.
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To apply the relativistic approximation in the SCharge mode, simply include the RelMode
command in the Particles section.

RELMODE
When the command is active, Trak divides the transverse electric force (Fr in cylindrical solu-
tions, Fy in planar) by γ2 during orbit calculations.

10.5 Restarting a run

Trak has the capability to restore solutions with space-charge and Child-law emission and
to proceed over additional iteration cycles. To restart a run, load the electric field file from
an initial run. The values of electrostatic potential in this file reflect the presence of space
charge. For convergence, the present run should have approximately the same initial conditions
as the first run (i.e., electrode potentials, particle lists, emission surfaces,...). In addition to
reloading the field solution, you must include the ReStart command in the Particles section.
This command initiates two actions that affect runs with emission surfaces:

• Trak automatically sets all suppression factors (SVal1, SVal2, ...) equal to 1.00 because
the initial field values are already almost consistent with Child-law conditions.

• Space-charge averaging is not applied on the first cycle because the initial charge density
is close to the final converged distribution.

RESTART
This command signals that an electric field file has been loaded with potential values that are
approximately consistent with the presence of beam space charge.

10.6 Other commands

The remaining valid commands for the SCharge tracking mode have identical functions to those
of the Track mode:

DT Dt
DT DtRef MASS
TMAX TMax
START(NReg) XStart YStart
NTRACKMAX NTrackMax
DMAX DMax
NSEARCH [E,B] NSearch
INTERP [LIN,LSQ]
MATERIAL [E,B] RegNo
VACUUM [E,B] RegNo
SECONDARY [E,B] RegNo DeltaMax0 EngMax0
STOP [UP,DOWN] [X,Y,Z,R] = Position
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DIAG [UP,DOWN] [X,Y,Z,R] = Position
REFLECT [UP,DOWN] [X,Y,Z,R] = Position
LISTON [NStep] [P,E,B]
PLOTOFF
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11 Tracking relativistic beams

11.1 Methods for beam-generated magnetic fields

The simulation of high-current relativistic electron beams is a major challenge for gun-design
codes. The drawbacks of approaches to the calculation of beam-generated magnetic fields in
previous versions of Trak and other codes are described in the reference S. Humphries and
J. Petillo, Laser and Particle Beams 18, (2000), 601 (supplied with the Trak package). The
article gives a detailed description of numerical methods applied in the present version of Trak.
This section summarizes critical concepts of the method to help you set up effective solutions.
The following discussions are oriented to cylindrical beams - note that the method also applies
to planar beams with some restrictions.

The approach has several advantages:

• It is largely automatic and requires little input from the user.

• It gives improved accuracy for field calculations, largely eliminating the problem of fila-
mentation in simulations of highly-relativistic beams.

• The method correctly accounts for boundary currents on conductors. As a result, Trak
can handle emission from convex or concave cathodes of arbitrary shape as well as beam
collection on internal targets.

• It is flexible enough to handle non-laminar beams, counter-flowing particle species and
reflex orbits.

• It provides useful diagnostic information on the distribution of beam current striking
target surfaces.

The foundation of the method is the calculation of beam-generated magnetic fields on the
electric field mesh. There are two motivations for this approach:

• Calculations of electric and magnetic fields are closely coupled, reducing systematic dif-
ferences.

• Fixed-potential regions in the electric mesh usually correspond to surfaces that carry
current and exclude magnetic fields generated by pulsed beams.

The goal of the magnetic field calculation is to find Bθ(r, z) in the propagation volume consistent
with the particle orbits. Trak determines values of Bθ at nodes in the electric field mesh and
then calculates the field at arbitrary positions by interpolation. The azimuthal magnetic field
is related to the enclosed current by:

Bθ(r, z) =
µ0Ienc(r, z)

2πr
. (36)
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Figure 23: Definition of terms for the calculation of beam-generated magnetic field on a con-
formal mesh. Red lines show the path from a node to the axis along facets. Green lines show
facets intersected by an orbit segment.

The quantity Ienc(z, r) is the axial current passing through a plane of radius r at position z.
The key to the method is therefore finding the total axial current of model particles that pass
through circles defined by the mesh nodes.

Figure 23 shows a segment of the orbit of a particle carrying current I moving through
the electric field mesh. The segment corresponds to a time step ∆t. The space charge is a
volumetric quantity that is conveniently assigned to the elements traversed by the particle.
The convention in Trak is to augment the space charge of the element at the segment midpoint
by an amount I∆t. In contrast, the current carried by the particle is a flux that is most
conveniently accumulated on the surfaces between elements (facets). Here the convention is to
assign the current I to all facets traversed by the particle in the +z direction and a current of −I
if the particle moves in −z. The reference listed above discusses details of current assignment
on conformal triangular meshes to ensure that the condition

∇ ·B = 0. (37)

is always satisfied. The particle tracking process during an iteration cycle gives a set of facet
currents that reflect the fluxes of the model particles. To find the current enclosed within a
node, we simply trace a path to the axis (red line in Fig. 23) and add the associated facet
currents. If the currents satisfy Eq. 37, the result is independent of the choice of path.

Implementation of the method in Trak is complicated by the presence of conductive ma-
terials (Fig. 23). There are no particle orbits through these regions; instead, they carry a
surface current that depends on the distribution of emitted particles. Trak uses the following
procedure to represent surface flows consistent with the condition of continuity of current:
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• Facets are divided into three categories: vacuum facets have vacuum elements on each
side, collector facets have one vacuum and one material element on each side, and excluded
facets are surrounded by material elements.

• Currents are assigned to vacuum facets by the procedure shown in Fig. 23. Currents are
assigned to collector facets only when an orbit terminates (i.e., passes from a vacuum to
a material element).

• After calculating all orbits, Trak proceeds to the enclosed current calculation. The first
step is to set the quantity along the nodes that constitute collector surfaces. The program
assumes that a collector surface is a contiguous set of collector facets that connect to the
z (or x) axis. Trak searches along the axis to find a collector node and then assigns
zero enclosed current. The program then searches for the next node connected through
a collector facet and assigns the current of the previous node plus the facet current. The
program continues in this manner until it reaches the end of the collector surface.

• After processing all collector surfaces connected to the axis, Trak calculates the enclosed
current on the remaining nodes connected to vacuum facets. After assigning zero enclosed
current to all nodes on the axis, the program works radially outward in layers. When
all the nodes in the layer with radial index L are processed, the program moves to layer
L+ 1. For each node, the program seeks the shortest connection to a node attached to a
vacuum or collector facet in layer L. Enclosed current for the node in layer L+ 1 equals
the current of the connected node in layer L plus the contribution of the facet. Trak stops
if it reaches the boundary of solution volume or if there are no remaining unprocessed
nodes.

• The final step is to find values of Bθ at the nodes, inserting the enclosed current and node
radius in Eq. 36.

Figure 24 shows sample results of the calculation. The example illustrates a limitation of the
method. The calculated fields are valid in the beam propagation region but exhibit dead areas
with zero field at large radius. The problem occurs in the region on the right-hand side because
the collector surface of the anode does not contact the axis. Therefore, Trak can not assign
enclosed current values along the surface. Points in the dead space that lie in the shadow of
the anode follow facet paths toward the axis that terminate on anode nodes with zero enclosed
current. A similar effect occurs on the cathode side because of the break between the cathode
and focusing electrode.

The dead spaces do not affect the simulation because they occur outside the region of beam
propagation. On the other hand, there may be cases where a representation of the beam-
generated field is required over the full solution volume. For example, suppose you want to
trace electrons emitted from the outer radius of the focusing electrode. In that case, you must
construct the mesh so that all nodes of interest are connected to the axis through a chain of
collector facets. The example in the next section illustrates such a setup.

The simulation of space-charge-limited electron emission from a convex cathode (Fig. 25)
raises an interesting issue. The collector facets on the outside of the cathode are shadowed
from the axis. Furthermore, electrons in the plot start from a generation surface and never pass
through the cathode surface. In this case, we might ask how Trak assigned facet currents on

73



Figure 24: Contour lines of Bθ showing missing values in areas shaded by re-entrant collector
surfaces that do not connect to the axis.

the cathode to give the valid field solution shown. The answer is that facet current assignment
occurred during back-tracking. Recall from Sect. 10.3 that in a calculation with space-charge-
limited emission, Trak projects orbits back toward the generation surface at a fixed velocity to
ensure correct assignment of space charge in the gap. Facet current assignment is also performed
during backtracking. When the particle strikes the cathode, the forward current I is assigned
to the intersected facet. Note that the backtracked orbits are not recorded in the TOU file.

The method of current assignment can also be applied to the calculations of beam-generated
fields in planar simulations. In this case Trak determines values of Bz at node points with
average beam motion in the x direction. The calculation is performed in the region y ≥ 0.0
with the assumption that the enclosed current in x equals zero along the line y = 0.0. Therefore,
the line y = 0.0 should represent a beam symmetry axis. The line must have the Neumann
condition in the EStat calculation and must be defined as a reflection boundary in Trak.

11.2 Commands and controls

When Trak enters the RelBeam mode, the program automatically sets up the mechanisms
and allots memory to perform the calculation of Bθ on the electric field mesh. Magnetic field
contributions are included in the particle equations of motion. With a good electric field mesh
and valid choice of emission surface properties, the calculation proceeds automatically with
good reliability. There are two commands unique to the RelBeam mode:

ZEROPOINT ZAxis
ZEROPOINT -10.0
In the calculation of beam-generated magnetic fields, the zero point is a position on the sym-
metry axis where Bθ or Bz equals zero. The default zero point position is on the axis halfway
between zmin and zmax (or xmin and xmax in planar solutions). In cases where upstream and/or
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Figure 25: Variations of Bθ for electron emission from a convex cathode.

downstream electrodes intersect the axis, Trakmust identify facets on their surfaces to calculate
the contribution of boundary currents to the beam-generated magnetic field. The procedure is
to start from the zero point and to walk along the axis until the intersection of an electrode
is detected. The program then identifies the surface facets of the source or target electrode
and marks them accordingly. For some geometries, the default zero point may be inside an
electrode and Trak will issue an error message. In this case, use the ZeroPoint command to
set a valid position manually. If there is only a source electrode, pick any downstream point on
the axis. If there are both source and target electrodes, pick a point between the two. Specify
the coordinates in units set by DUnit.

BACKTRACK
Particles generated from emission surfaces automatically backtrack and make current contri-
butions to collector facets on the source surface. This may not be the case when particles are
created with the PList and PFile commands. In this case, the particles from an electrode must
be generated within a vacuum element near the fixed-potential surface for a valid electric field
interpolation. As a result, the nodes on the electrode surface may have zero values for enclosed
current and Bθ. The invalid field values would give inaccurate field interpolations near the
surface. When the BackTrack command appears, Trak performs an initial backtrack operation
on list-input particles. The program reverses the momentum and sign of the current for each
particle and follows the orbits until they terminate. Current is assigned to the collector facet
intercepted by the particle orbit. Note that backtracking may also improve the distribution of
space-charge and the calculation of electric fields near the surface.

The following commands have special interpretations in the RelBeam mode:
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PLIST [Pos, Neg]
PFILE [Pos, Neg]
EMIT(NReg) Mass Charge DEmit [NPerSeg JLimit Ts Ns] [Pos,Neg]
Trak determines whether current flows in the +z or −z directions when particles pass through
vacuum facets by comparing the directions of the orbit and facet vectors. On the other hand,
when a particle strikes a collector facet the program may not be able to determine whether
current exits through the right or left-hand boundaries. The axial direction of current along
conducting surfaces must be specified for valid orbit solutions in the case of internal collectors
or sources. You can add additional string parameters at the end of the PList, PFile and Emit
commands to signal whether the associated particle flow on sources and collectors is in the
direction from left to right [Pos ] or from right to left [Neg ]. The default is Pos.

RELMODE [Zrmin Zrmax]
RELMODE [XRelMin XRelMax]
RELMODE = (20.00 40.00)
The relativistic mode calculations discussed in Sect.10.4 may seem unnecessary in the Rel-
Beam tracking mode where the program explicitly calculates forces from beam-generated fields.
Nonetheless, there is an important reason to include it. For highly relativistic beams (γ ≫ 1.0)
passing through transport regions where there is no applied electric field, it is more accurate
to determine the transverse force from Eq.35 than to make separate calculations of the electric
and magnetic components. Suppose we wanted to investigate a relativistic electron gun where
the beam is matched to a long transport solenoid. The best approach would be to calculate
magnetic and electric forces explicitly in the injector region and then to switch to the relativistic
mode in the transport region. This form of the RelMode command enables such a calculation.
The two real-number parameters define limits along z (cylindrical) or x (planar). The code
applies the relativistic mode only in the region Zrmin ≤ z ≤ Zrmax. Enter values in units set
by DUnit. The defaults are Zrmin = −∞ and Zrmax = +∞.

11.3 Application example - simulation of a pinched electron beam

diode

The example described in this section illustrates several Trak techniques. The application, a
self-pinched high-intensity electron beam with ion flow effects, is a challenge for a ray-tracing
codes. Figure 26 shows the geometry. The anode is a tungsten rod of diameter 1.0 mm located
on the axis. The goal is to produce a compressed electron spot on the anode tip with an axial
extent less than 1.0 mm. A pulsed voltage of +1.2 MV is applied to the anode. The cathode is
a thin coaxial cylinder with an inner radius of 5.0 mm. The figure shows a magnified portion
of the simulation volume. The assembly is inside a grounded vacuum chamber with a radius of
35.0 mm. The simulation covers an axial region from -25.0 mm to 25.0 mm.

The file PINCHBEAM.MIN (included in the example library) defines the variable resolution
mesh. A line region is defined for electron emission on the cathode surface (red line in Fig. 26).
The intense electron flow at the anode immediately creates a surface plasma. Therefore, we
include the possibility of space-charge-limited ion emission from the anode tip (green line in
Fig. 26).
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Figure 26: Geometry of the PINCHBEAM example - magnified view of the acceleration gap. Red
line: electron emission region on the cathode. Green line: ion emission region on the anode.

Table 10 shows the file PINCHBEAM.TIN with added line numbers. Note the use of the
multiplication factor in the EFile command of Line 2. The solution PINCHDIODE.EOU was
generated with an applied potential of 1.0 V. We can then use the normalized solution with a
multiplication factor to investigate the effects of changes in applied voltage. The solution must
be performed gradually because of the complex electron orbits in the strong beam-generated
magnetic fields. Note the large value of NCycle and small value of Avg in Lines 8 and 9. Despite
the complexity of particle motion, the solution exhibits good convergence. The emitted current
of 16.65 kA in Cycle 33 differs by only about 1 percent from the current in Cycle 32. Lines
10 and 11 defined emission surfaces for the electrons and protons. The string Pos in Line 10
indicates that the electrons move from left to right while Neg in Line 11 signals that ions move
from right to left. The zero point (Line 13) for the beam-generated magnetic field is on the
axis between the cathode and anode.

The simulation includes a large number of particles (5 per facet) for good statistics. Note
that the Mass form of the Dt command has been employed because there are two particle
species. With regard to the reference time step, the minimum element width in the gap region
is 0.1 mm. The velocity of a proton (1.0 AMU) is about 1.52 × 10−7 m/s, giving a minimum
element transit time of 6.6× 10−12 s. The value DtRef = 1.8× 10−11 s was sufficient to give a
good resolution of the orbits.

The equilibrium current values were 15.20 kA for electrons and 1.12 kA for protons. The
effect of ions in neutralizing space-charge was critical to achieve high-current operation and a
well-formed pinch. The current dropped by about a factor of 3 if the ions were omitted. The
BBBoundary command in Line 16 of the script initiates a listing of accumulated facet currents
on the anode rod. The results show that about 78% of the electron current impinged on the
first 1 mm length of the anode. An inspection of the electron orbits in Fig. 27 shows that
conditions are marginal for a well-contained pinch. Electrons emitted from the inner edge of
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Table 10: Contents of the file PINCHBEAM.TIN

01: FIELDS

02: EFile = PINCHDIODE.EOU 1.2E6

03: MaxCycle = 200

04: ResTarget = 1.0E-7

05: DUnit = 1000.0

06: END

07: PARTICLES RELBEAM

08: NCycle = 33

09: Avg = 0.20 (20, 0.05)

10: Emit(5) 0.0 -1.0 0.15 5 POS

11: Emit(6) 1.0 1.0 0.15 5 NEG

12: Dt: 1.2E-11 Mass

13: ZeroPoint: -10.00

14: END

15: DIAGNOSTICS

16: BBDump: PINCHDIODE

17: BBBoundary (6)

18: EDump: PINCHDIODEP

19: END

20: ENDFILE
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Figure 27: Electron (top) and ion orbits (bottom) for the PINCHBEAM example with NSkip = 5.
Color-coding follows the electrostatic potential.
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the cathode tip strike the anode about 2.5 mm from the tip. A small reduction in the cathode
inner radius to 4.5 mm gives enhanced current that significantly improves the quality of the
focus.

11.4 Restarting a RelBeam calculation

The following activities are necessary to restart a calculation in the RelBeam mode: 1) load the
electric field file created by the EDump command in a previous run using the EFile command,
2) load values to calculate the beam-generated magnetic field from the same run using the
BBFile command, and 3) include the ReStart command in the particles section.

BBFILE FileName
BBFILE PINCHBEAM.BBD
Load quantities to calculate beam-generated magnetic fields generated in a previous solution
with the BBDump command. Trak issues an error message if an electric field has not been
loaded or if the mesh of the BBD file does not match the electric field mesh.

You can also use the BBFile command in a run to track single particle orbits in the self-
consistent fields of a relativistic beam. In a Track mode calculation, load field information
using the EFile, BFile and BBFile commands and start particles of any species using lists or
emission surfaces. Trak includes contributions to the magnetic field from all sources. Note
that field values will not be changed by the presence of particles in the Track mode.

11.5 Space-charge and current neutralization of relativistic electron

beams

Although Trak does not include detailed models of plasmas, you can investigate effects of global
space-charge and current neutralization. Partial space-charge neutralization of a relativistic
electron beam may occur if low-energy plasma electrons are expelled, leaving behind an excess
ion density. The space-charge neutralization factor fe is often defined as the ratio of the excess
ion density to the beam density. The presence of the ion density reduces the electric field by a
factor (1− fe). For example, if fe = 0.9, then the loss of plasma electrons reduces the average
fields in the beam volume by a factor of 10.0.

To apply local space-charge neutralization, define a dielectric region in the electric field mesh
and assign a relative dielectric constant ǫr = 1/(1 − fe) in the EStat solution. The dielectric
region must be well separated from acceleration gaps so that it does not affect the applied fields.
In the subsequent Trak solution, contributions to electric fields from the beam space charge
will be reduced by (1− fe). Be sure to include a command of the form

VACUUM(E) = NReg

in the Particles section of the Trak file. Here NReg is the region number of the dielectric.
This command over-rides the default assignment of the Material attribute to all regions in the
electric field mesh that have ǫr 6= 1.0.

Partial current neutralization may occur if a flow of plasma electrons is driven by the
inductive fields of a pulsed beam. The current neutralization factor fm is the ratio of the
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average plasma current in the propagation volume to the beam current. The effect is to reduce
the beam-generated magnetic fields by a factor (1− fm).

CNEUT Fm
CNEUT = 0.90
In response to this command, Trak multiplies all values of Bθ or Bz calculated from the beam
current by the factor (1− fm). For relativistic beam propagation in a plasma, the factor lies in
the range 0 ≤ fm ≤ 1.0.

Although space-charge neutralization may be applied to selected regions through the choice
of region dielectric constant, the current neutralization factor applies globally to all active nodes
in the electric field mesh. Suppose your goal is to model effects of neutralization on a relativistic
electron beam injected through a conducting foil into a gas cell. A possible approach would be
to divide the solution into two parts. The first part addresses the vacuum injector with particle
orbits terminated at the foil. The PRT file created by the first solution is used as input to
the gas cell solution which could include both space-charge neutralization and a global current
neutralization factor.

81



12 Field emission of electrons with space-charge effects

In the FEmit particle-tracking mode, Trak can model field emission of non-relativistic electrons.
As in the SCharge mode, the program can automatically generate particles over marked source
surfaces. The calculations include self-consistent effects of space charge. You can add additional
electrons or ions using the PList or PFile commands. There are three differences from the
SCharge mode:

• Only electrons may be created on emission surfaces.

• Because the electric field always has a non-zero value on the source surface, it is not
necessary to create a generation surface. Electrons are created directly at the source
facets.

• Electron current is assigned according to the Fowler-Nordheim equation rather than the
Child-law algorithm.

Trak uses Fowler-Nordheim functions tabulated in A. Modinos, Emission Spectroscopy

(Plenum Press, New York, 1984), p. 12. If the quantity E is the local electric field amplitude
(including space-charge contributions) at a source facet with work function φ, then the current
density in (A/m2) is given by

jFE = 1.537× 10−6 eΓE2

φ t(χ)2
, (38)

where

Γ = −6.83× 109
φ3/2 v(χ)

E
, (39)

and

χ = 3.79× 10−5

√
E

φ
. (40)

In the equations E is expressed in V/m and φ in eV. Table 12 lists values for the functions v(χ)
and t(χ). Trak uses a cubic spline interpolation to find intermediate values.

The set of allowed commands is similar to that for the SCharge mode. The one difference
is that the Emit command has different parameters:
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Table 11: Fowler-Nordheim functions
χ v(χ) t(χ)

0.0000 1.0000 1.0000
0.0500 0.9948 1.0011
0.1000 0.9817 1.0036
0.1500 0.9622 1.0070
0.2000 0.9370 1.0111
0.2500 0.9068 1.0157
0.3000 0.8718 1.0207
0.3500 0.8323 1.0262
0.4000 0.7888 1.0319
0.4500 0.7413 1.0378
0.5000 0.6900 1.0439
0.5500 0.6351 1.0502
0.6000 0.5768 1.0565
0.6500 0.5132 1.0631
0.7000 0.4504 1.0697
0.7500 0.3825 1.0765
0.8000 0.3117 1.0832
0.8500 0.2379 1.0900
0.9000 0.1613 1.0969
0.9500 0.0820 1.1037
1.0000 0.0000 1.1107
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EMIT WorkFunc [NPerSeg Beta]
EMIT(4) ( 3.56, 2, 1000.0)
This command identifies region number RegNo (integer) as a source surface and sets associated
emission properties. Trak issues an error message if the region does not define a valid source
surface (i.e., sets of nodes on the edges of facets between Material and Vacuum elements).
At least one Emit command is required under the FEmit tracking mode. Up to twenty Emit
commands may appear in the Particles section. Because only electrons are allowed, it is not
necessary to specify mass and charge of emitted particles. The real-number parameter Work-
Func is the work function φ in eV. The integer parameter NPerSeg governs how many model
electrons are created per surface facet. The optional parameter β is a field enhancement factor
that may be useful to simulate emission from carbon nanotube assemblies. If Eloc is the local
electric field at the facet, then the program uses the quantity E = βEloc in Eqs. 38 through 40.

SUPPRESS SVal1 SVal2 SVal3 ...
SUPPRESS 0.20 0.30 0.40 0.60 0.80 1.00
Space-charge effects are usually small in field emission problems so the role of the suppression
factors discussed in Sect. 10.3 is not as critical. The default values in the FEmit mode are

NCycle Supression value

========================

1 0.500

2 0.750

3 1.000

4 1.000

...

Note that the number of iteration cycles should be in the range NCycle ≥ 3 for the default
values of suppression factors.

The remaining commands allowed in the Particles FEmit section are identical to those in
the Particles Track mode:

DT Dt
DT DtRef MASS
TMAX TMax
START(NReg) XStart YStart
NTRACKMAX NTrackMax
DMAX DMax
NSEARCH [E,B] NSearch
INTERP [LIN,LSQ]
MATERIAL [E,B] RegNo
VACUUM [E,B] RegNo
SECONDARY [E,B] RegNo DeltaMax0 EngMax0
STOP [UP,DOWN] [X,Y,Z,R] = Position
DIAG [UP,DOWN] [X,Y,Z,R] = Position
REFLECT [UP,DOWN] [X,Y,Z,R] = Position
LISTON [NStep] [P,E,B]
PLOTOFF
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13 Extraction of high-current ion beams from a plasma

When modeling electron extraction from a thermionic or field emission cathode, we can assume
that the profile of the source surface is specified a priori. Extraction of ions from a plasma is a
more difficult challenge because the surface shape that satisfies all physical constraints is not
known in advance. In the Plasma mode, Trak performs the Child-law emission calculations
of the SCharge mode described in Sect.10.3. In addition, the program automatically flexes the
plasma surface to ensure a uniform distribution of current-density. The calculation is complex,
so it is important that you understand the physical basis of ion extraction from a plasma and the
goals of the calculation. Section 13.1 discusses this topic and summarizes numerical methods
applied in Trak. Section 13.2 reviews new commands that appear in the Plasma mode, while
Section 13.3 discusses benchmark examples.

13.1 Ion extraction from a free plasma surface

This section briefly reviews the physical basis of the Plasma mode in Trak. For a complete
discussion of Child-law emission, the Bohm current density and the formation of a plasma
meniscus, see S. Humphries, Charged-particle Beams (Wiley, New York, 1990), Chap. 7.
This book is included in the Trak package.

To begin, we must define the term free plasma extraction surface. Assume that plasma ions
generated by a source expand in a field-free region through an aperture into an acceleration
region with an applied electric field (Fig. 29). The position of the extraction surface (the
transition between the plasma environment and the vacuum flow region) is determined by a
balance between the plasma ion flux (which we shall denote by an effective ion current density
jp) and the extraction current density governed by the Child law, jC . In the one-dimensional
geometry of Fig. 28, the current density limit for ions with charge-state Zi and mass mi in a
gap of width d and applied voltage V0 is given by the expression:

jC =
4ǫ0
9

√

2Zie

mi

V
3/2
0

d2
. (41)

If the ion flux exceeds the vacuum current limit (jp > jC), then the plasma expands to
decrease the gap width d until flux balance is achieved: jp = jC . In this case, the surface in
Fig. 28 moves to the right. Conversely, if jp < jC , the surface recedes to the left. In most
plasma sources for ion generation, the ion temperature (Ti) is much smaller than the electron
temperature (Te). In this case, the available effective ion current density is given by the Bohm
expression:

jp ∼= 0.6 eZini

√

kTe/mi. (42)

The Trak model treats a homogeneous plasma (i.e., jp has a uniform value over the extrac-
tion surface). Therefore, a Plasma mode simulation has the following primary goal: for given
applied voltages and electrode geometry, find a shape of the extraction surface that guarantees
a uniform value of jC . A critical issue is the nature of the extraction surface at the triple
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Figure 28: Terminology for ion extraction from a free plasma surface.

Figure 29: One-dimensional extraction from a free plasma surface.
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Figure 30: Balancing plasma flux jp with space-charge-limited flux jC to achieve a smooth
connection at the triple point. a) Ideal balance. b) Insufficient plasma flux. c) Excess plasma
flux.

point : the intersection of the plasma, the aperture electrode and the vacuum acceleration re-
gion (Fig. 28). Figure 30a shows the ideal situation where the values of jp and jC at the triple
point allow a smooth connection between the extraction surface and the focusing electrodes. A
reduction in jp from the optimum value causes the plasma to recede into the aperture. In this
case the focusing electrode acts as an electrostatic shield, giving a large reduction in the field
amplitude at the plasma edge. The implication is that the plasma edge is effectively tied to the
aperture at the triple point. A low value of jp gives a distorted extraction surface (Fig. 30b)
with attendant poor beam optics. Conversely, a value of jp above the optimal value causes the
plasma to bulge into the extraction gap resulting in a divergent beam (Fig. 30c). In summary,
there are two constraints on an acceptable plasma extraction surface:

• The value of jC must be uniform.

• The plasma surface must make a smooth connection at the triple point.

The combination of the two conditions with specified electrodes and applied voltages defines a
unique plasma surface shape and Bohm current density.

Trak follows a multi-step procedure to determine self-consistent plasma surfaces. Although
the operations are complex, most of them are performed automatically so that the user need
not be concerned with details. The benchmark examples of Sect. 13.3 show that it is relatively
easy to set up a Plasma mode calculation.

1. The user creates an electric-field model of the gun geometry in Mesh. The mesh must
include a filled (volumetric) region to represent the plasma (Fig. 28). The plasma region
must have enough depth (i.e., number of elements parallel to the displacement direction)
to accommodate flexing of the surface. The user makes an initial guess of the extraction
surface shape (such as a flat plane). The initial surface should connect smoothly to
the aperture at the triple point. The plasma region must appear in the Mesh script
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Figure 31: Definition of plasma facets (red line) and plasma nodes (yellow dots). Plasma
elements are colored violet and vacuum elements are colored blue. Top: Disk plasma with
symmetry axis on the lower edge. Bottom: Annular plasma.

before the surrounding aperture region. This ordering ensures that nodes on the shared
plasma-aperture surface are associated with the aperture.

2. The user generates an initial electrostatic solution with EStat. The plasma and aperture
regions should be assigned the fixed-potential condition with the same value of applied
voltage.

3. In Trak, the plasma region is identified by an Emit statement. The program initially
sweeps through the mesh to identify facets and nodes of the source surface. Source facets
lie between an element with the region number of the plasma and a Vacuum element.
Plasma surface nodes lie along the source surface. Figure 31 shows the two possible
options for assignment of surface nodes: a) a cylindrical or planar gun where the surface
has an axis of symmetry and b) an annular gun.

4. Trak orders the facets to form a connected set with respect to distance from the axis or
a specified start point. The program determines a set of unit vectors normal to the facets
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that point out of the plasma region. The vectors are used to construct an emission surface
at a distance DEmit from the source surface to carry out the Child-law calculation.

5. Trak performs a calculation of space-charge-limited flow from the initial surface by cre-
ating one or more model ions on each facet of the emission surface. The program runs
NInit cycles to achieve a stable, converged solution using the same procedure as in the
SCharge mode.

6. Trak calculates the current density on source facets by averaging and back-projecting
the model particle currents at the emission surface. The variation of current density is
smoothed to prevent the unstable growth of ripples in the surface during the adjustment
procedure.

7. The value of emitted current density at each surface node (jn) is computed by averaging
the values on adjacent facets. In addition, a node unit vector (pointing out of the plasma)
is computed by averaging the vectors of adjacent facets. The position of each node is
moved along this vector a distance ∆n = (αd/2)(1 − jn/jout) The relationship follows
from the scaling of Eq. 41. The quantity d is the width of the acceleration gap, α is a
safety factor to ensure stability of the calculation, and jout is the current density on the
facet adjacent to the triple point. Normalizing the displacement to jout ensures that the
plasma surface intersects the triple point at a small angle. The direction of the shift is
away from the acceleration gap (into the plasma) when jn > jout. In this case the shift
gives a local reduction in the space-charge-limited current density.

8. The positions of plasma and vacuum nodes near the plasma surface are relaxed to preserve
element integrity.

9. New normal vectors are computed for the displaced facets and the emission surface is
reconstructed.

10. Trak performs NCorrect cycles of orbit and electric field recalculation to determine cur-
rent densities for space-charge-limited flow from the new plasma surface. The program
then returns to Step 6 to recalculate the plasma surface based on updated values of current
density. The cycle of surface regeneration and solution correction is carried out NSurface
times to achieve a convergent solution.

It is important to recognize cases where the Trak model is invalid. The program cannot be
applied to systems where there is a strong transverse magnetic field at the extraction surface
(i.e., magnetically-insulated ion diodes, transverse extraction from a Penning source,...). In this
case, the condition jp = jC may not hold. Nonetheless, Trak can give useful information on
plasma extraction from sources with applied magnetic fields (e.g., duoplasmatron,...) as long as
the source has sufficient shielding to isolate the magnetic field from the high-voltage extraction
gap. The model also does not apply to sources that produce a mixture of ion species or charge
states. In this case the behavior of the extraction sheath is more complex than the simple
Child-law model. For example, ions with high-charge state may be preferentially extracted.
Finally, we should note that the Plasma mode may also be useful in the design of electron guns
with thermionic cathodes. Through the iterative procedure, you can determine cathode shapes
that will guarantee uniform current density of the extracted beam.
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13.2 Plasma mode commands

The following commands perform the same function as those described in Chap.10 for the
SCharge mode:

AVG = 0.20
MAXCYCLE = 2500
RESTARGET = 2.0E-8
OMEGA = 1.95
START(5) = 0.25, 0.00
RESTART

Note the NCycle command is not valid in the Plasma mode. Trak automatically determines
NCycle from the parameters supplied to control the plasma surface calculation. Note that you
can add list particles with the commands:

PLIST
PFILE

The Emit command has a different format in the Plasma mode.

EMIT(NReg) Mass Charge DEmit NPerSeg DGap [Ts]
EMIT(4) = (4.0, 1.0, 0.05, 3, 2.50)
This command identifies the filled region NReg in the electric-field mesh as a plasma. The
plasma surface is defined as the boundary of the region adjacent to a Vacuum region. The
plasma must be a fixed-potential region. Specifications for the following five parameters are
required. The parameters Mass and Charge have the same meaning as in the Emit command
of the Track and SCharge modes. Enter the mass in AMU (atomic mass unit). Trak inserts
the value for an electron if Mass = 0.0. Enter the charge of the emitted particles in units
of e (i.e., -1.0 for electrons and +1.0 for protons). The quantity DEmit is the distance from
the source surface to the emission surface. Enter the value in units set by the present value
of DUnit. As a rule of thumb, set DEmit equal to about 1.5-2.0 times the width of elements
adjacent to the plasma surface. Large values of DEmit may prevent convergence of the plasma
surface search. The integer parameter NPerSeg is the number of model particles created per
facet of the plasma surface. The real-number parameter DGap is the approximate width of the
acceleration gap. Enter the value in units set by DUnit. Larger values of DGap may speed
the calculation. Reduce DGap if the calculation does not converge. The signs of convergence
failure are: 1) a wavy of irregular plasma surface, 2) code termination because of distorted
elements. The optional parameter Ts (in eV) equals the tempreature of the plasma to calculate
the angular divergence of particles at the emission surface. Trak can handle only a single
plasma region in the Plasma mode. Therefore, the Particles section may contain only one Emit
command.

The following command controls the plasma surface calculation.
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PLASMAPARAM NSurface NCorrect NInit [NRadius]
PLASMAPARAM 4 5 12
The PlasmaParam command has four integer parameters, one of them optional. The quantity
NSurface is the number of cycles of plasma surface adjustment. The quantity NCorrect is
the number of orbit-field recalculations to determine a stable solution for space-charge-limited
flow per surface adjustment. NInit is the number of initial orbit-field calculations before the
first surface adjustment. The optional parameter NRadius controls the width of the region
near the surface over which mesh smoothing is applied to plasma and vacuum nodes. (Default
values: NSurface = 3, NCorrect = 5, NInit = 12, NRadius = 4).

In the remainder of this section, we shall discuss how to choose values for the quantities in
the PlasmaParam command and how to ensure solution convergence. To begin, the number
of required surface adjustments (controlled by NSurface) depends on how much the initial
surface must be flexed to achieve uniform current density. The solution will converge faster if
you make an improved initial guess of the surface shape based on a previous run. Trak records
extensive information on the surface adjustment procedure in the listing file RUNNAME.TLS.
The table labeled Adjustment of plasma surface nodes lists the smoothed values of jn used to
calculate the displacements ∆n as well as the initial and final values of the plasma surface node
coordinates. Trak also records the root-mean-squared node displacement. This quantity will
be small for a convergent solution. Other indications of convergence are: 1) values of jn are
almost equal and 2) the total emitted current approaches a fixed value.

Valid position adjustments ∆n require accurate values for the smoothed, space-charge-
limited current density. Therefore, Trak must perform several orbit-field recalculations to
update the emitted current density for the new source/emission surface positions. The param-
eter NCorrect controls the number of orbit-field recalculations per surface adjustment. The
value should be large enough to ensure that total emitted current approaches a stable value be-
tween surface adjustments. The parameterNInit equals the number of orbit-field recalculations
before the first surface adjustment. The number must be sufficient to achieve a converged solu-
tion for the initial surface geometry. You can reduce NInit by loading a previously-computed
solution for space-charge-limited flow from the initial surface and by using the Restart com-
mand.

Finally, the parameter NRadius controls the half-width of the region near the plasma
surface over which mesh smoothing occurs. If a plasma node has indices (K0, L0), then graded
smoothing is applied to nodes in the range K0 − NRadius ≤ K ≤ K0 + NRadius, L0 −
NRadius ≤ L ≤ L0 + NRadius. The value of NRadius must be larger than the number of
elements over which the surface is displaced from the initial guess. Increase NRadius if Trak
reports an element distortion in response to a surface shift. You can reduce the chances for
element distortion by making a better guess of the initial surface.

13.3 Application examples

This section describes some simple examples that illustrate the physics of ion extraction from
a plasma as well as Trak modeling techniques. Figure 32 shows the geometry of a benchmark
calculation for a cylindrical proton gun defined by the files PLASMA01.MIN, PLASMA01.EIN and
PLASMA01.TIN. The aperture has a radius of 2.0 cm, the extraction gap has width d = 4.0
cm and the applied voltage is V0 = 50.0 kV. The focusing electrode is inclined at an angle
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Figure 32: Geometry of the example PLASMA01 with focusing electrode angle θ = 22.5o. Fig-
ure shows the self-consistent plasma surface, equipotential contours and model particle orbits.
Dimensions in cm.

θ = 22.5o and the cathode is a plane on the right-hand side of the solution volume. With these
parameters we expect that the solution will approximate an ideal Pierce gun. Therefore the ion
current density jC should be almost uniform over a flat plasma surface that intersects the triple
point. The current-density magnitude is given approximately by Eq. 41: jC = 380.5 A/m2.
For comparison, the Trak calculation in the Plasma mode gives a surface with a convexity of
0.009 cm on axis and average current density jC = 402.6 A/m2. In the final state, the current
density is uniform over the surface to within ±0.06%. The calculation illustrates the stability
and convergence of the Plasma mode procedure.

Next, suppose we increase the focus-electrode angle to 30.0o (example PLASMA02). The
extra metal reduces the electric field on the outer edge of the aperture, suppressing the space-
charge-limited current density. Therefore, emission is non-uniform over a flat surface that
intersects the triple point (Fig. 33). In this case, Trak must flex the plasma to create a concave
surface, thereby reducing the current density near the axis. Table 12 shows the Trak input
script. The Emit command specifies proton generation using an emission surface a distance
DEmit = 0.075 cm from the source surface. For comparison, the local element width along z
is 0.050 cm. Two model particles are created per facet and the gap width is DGap = 4.0 cm
(Fig. 32). The PlasmaParam command specifies 4 cycles of surface adjustment with 5 orbit-
field recalculations for each cycle. There are 12 initial orbit-field recalculations to achieve an
accurate starting solution.

The left-hand-side of Fig. 34 shows the final concave shape of the plasma surface along with
computed equipotential lines and model particle orbits in the converging beam. The right-
hand side shows the solution for a shallow focusing-electrode angle (θ = 15.0o). In this case,
the electric field magnitude is higher at the outer radius so that the plasma must assume a
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Figure 33: Radial variation of current density for example PLASMA02 with θ = 30.0o. Green
curve shows the initial state while the blue curve shows the current density after the iterative
plasma surface adjustment.

Table 12: Trak input file PLASMA02.TIN

* FILE: Plasma02.TIN

FIELDS

EFILE: Plasma02.EOU

DUNIT: 100.0

END

PARTICLES Plasma

EMIT(2) 1.0 1.0 0.075 2 4.0

PLASMAPARAM 4 5 12

AVG 0.30

END

DIAGNOSTICS

JSOURCE

PARTLIST

EDUMP Plasma02P

END

ENDFILE
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Figure 34: Self-consistent plasma surface shape, equipotential lines and model particle orbits.
Left: example PLASMA02 with θ = 30.0o. Right: example PLASMA03 with θ = 15.0o.

convex shape for uniform current density.
The examples suggest the following logical sequence for the design of a practical cylindrical

ion gun:

1. Starting from the Pierce solution (θ = 22.5o) with flat emission surface, we add an exit
aperture in the cathode. The effect of the aperture is to reduce the electric-field magnitude
on the plasma surface near the axis.

2. To compensate for the reduction in on-axis current density, we increase the angle of the
focusing electrode to suppress emission near the outer radius of the plasma surface.

3. A further increase in the focusing electrode angle would give a converging beam. In this
case, it is possible to reduce the radius of the exit aperture (Fig. 28).
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14 Modeling secondary emission of electrons

14.1 Models for secondary electron emission

Trak can represent electron secondary-emission processes to model electro-optical devices and
collectors for high-power vacuum tubes. These capabilities apply only to electrons and can
be used in the Track, SCharge, RelBeam and FEmit modes. In the latter modes the space-
charge of emitted electrons is added to the electric field recalculation. A single model electron
orbit can represent a multi-generational set of electrons. Regions with elements corresponding
to secondary emitters are defined with the Secondary command. When an electron enters a
secondary element, the secondary-emission coefficient δ is calculated from the incident energy
and particle angle relative to the surface at the entrance point. The current of the electron is
multiplied by δ and it is restarted at a point in the vacuum space near the surface entrance
point. The kinetic energy of the emitted electron follows a Maxwell distribution with Te = 2.0
eV. The direction of emission is normal to the electrode surface.

Trak determines the secondary emission coefficient from a parametric model based on work
by Jonker [J.L.H. Jonker, Phillips Research Reports 6, 372 (1951), Phillips Research Reports
7, 1 (1952), Phillips Research Reports 12, 249 (1957)] and Vaughn [R.M. Vaughn, IEEE
Trans. Electron Devices ED-36, 1963 (1989) and IEEE. Trans. Electron Devices ED-40,
830 (1993)Ṫhe model involves the angle α between the direction of the incident electron and a
vector normal to the surface. The defining function for the angular dependence of δ is

F (α) =
1

√

cos(α)
. (43)

The maximum value of secondary coefficient and the corresponding incident electron energy
are given by

δm = δmo F (α), (44)

Em = Emo F (α), (45)

where δmo and Emo are the values at normal incidence. These quantities are tabulated for a
variety of materials in Tables 13 and 14. The secondary emission coefficient as a function of
the angle α and kinetic energy E of the incident electron is given approximately as

δ(α,E) ∼= δm(α)
[

f exp(1−f)
]a
, (46)

where f = E/Em(α). The parameter a has the value 0.62 for f < 1 and 0.25 for f ≥ 1.
To prevent infinite values of δ, the code takes α = 80.0ofor orbits with incident angles that
exceed 80.0o. The reference S. Humphries, N. Dione and J. Petillo, Secondary-electron emission
modeling on a conformal mesh, Proc. WorkShop on RF Superconductivity, Santa Fe, 1999
(included with the Trak package) gives a detailed description of numerical methods used to
treat secondary emission in the Trak code.
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Table 13: Secondary emission coefficients for elements, adapted from D.R. Lide, ed., Hand-

book of Chemistry and Physics, 74th Edition (CRC Press, Boca Raton, 1993), 12-107

Element σmo Emo

(eV)
Element σmo Emo

(eV)

Ag 1.5 800 Li 0.5 85
Al 1.0 300 Mg 0.95 300
Au 1.4 800 Mo 1.25 375
B 1.2 150 Na 0.82 300
Ba 0.8 400 Nb 1.2 375
Bi 1.2 550 Ni 1.3 550
Be 0.5 200 Pb 1.1 500
C (diamond) 2.8 750 Pd > 1.3 > 250
C (graphite) 1.0 300 Pt 1.8 700
C (soot) 0.45 500 Rb 0.9 350
Cd 1.1 450 Sb 1.3 600
Co 1.2 600 Si 1.1 250
Cs 0.7 400 Sn 1.35 500
Cu 1.3 600 Ta 1.3 600
Fe 1.3 400 Th 1.1 800
Ga 1.55 500 Ti 0.9 280
Ge 1.15 500 Tl 1.7 650
Hg 13 600 W 1.4 650
K 0.7 200 Zr 1.1 350
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Table 14: Secondary emission coefficients for compounds, adapted from D.R. Lide, ed., Hand-

book of Chemistry and Physics, 74th Edition (CRC Press, Boca Raton, 1993), 12-107

Material σmo Emo (eV) Material σmo Emo (eV)

Alkali halides Oxides

CsCl 6.5 Ag2O 1.0
KBr (crystal) 14 1800 A12O3 (layer) 2-9
KCl (crystal) 12 1600 Ba0 (layer) 2.3-4.8 400
KCl (layer) 7.5 1200 Be0 3.4 2000
KI (crystal) 10 1600 Ca0 2.2 500
KI (layer) 5.6 Cu20 1.2 400
LiF (crystal) 8.5 Mg0 (crystal) 20-25 1500
LiF (layer) 5.6 700 Mg0 (layer) 3-15 400-1500
NaBr (crystal) 24 1800 MoO2 1.2
NaBr (layer) 6.3 SiO2 (quartz) 2.1-4 400
NaCl (crystal) 14 1200 SnO2 3.2 640
NaCl (layer) 6.8 600 Others

NaF (crystal) 14 1200 BaF2 (layer) 4.5
NaF (layer) 5.7 CaF2 (layer) 3.2
NaI (crystal) 19 1300 BiCs3 6 1000
NaI (layer) 5.5 BiCs 1.9 1000
RbCl (layer) 5.8 GeCs 7 700
Sulfides Rb3Sb 7.1 450
MoS2 1.1 SbCs3 6 700
PbS 1.2 500 Mica 2.4 350
WS2 1.0 Glasses 2-3 300-450
ZnS 1.8 350
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14.2 Control commands

The following commands may appear in the Track, SCharge, RelBeam and FEmit sections.

SECONDARY [E,B] NReg DeltaMax0 EngMax0
SECONDARY (E,5): 2.45 320.0
This command designates that region NReg in the electric or magnetic field mesh is a Sec-
ondary type and assigns emission parameters. In contrast to the simple Vacuum and Material
specifications, the command requires two parameters. The real-number quantity DeltaMax0 is
the maximum value of the secondary emission coefficient for normal incidence. The real quan-
tity EngMax0 is the kinetic energy of the incident electron (in eV) at which the maximum
occurs.

SECONDPARAM KECutOff MinFact
SECONDPARAM 1.0 2.0E-3
This command sets global parameters that control the termination of multi-generation electron
orbits to prevent infinite calculations. The quantity KECutOff is a cutoff value (in eV)
for kinetic energy. An orbit terminates if the energy of the incident electron falls below this
value. The default is KECutOff = 2.5 eV. During a multi-generation orbit calculation Trak

maintains a quantity MultFact equal to the effective number of electrons in a generation per
incident electron. This quantity equals the product of secondary emission coefficients for all
collisions with secondary materials, MultFact(N) = δ1 × δ2 × ...δN . An orbit is terminated if
the multiplication factor drops below the valueMinFact. The default isMinFact = 1.0×10−4.

SECONDLIST In response to this command Trak writes a detailed record of secondary
emission events during an orbit integral to the listing file. In runs with NCycle > 1, a record
is made only on the final cycle.

Finally, additional information on particle multiplication is contained in data written in
response to the RegList command in the Diagnostics section.
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15 Particle and field diagnostics

Trak records information on the calculation in the listing file FPrefix.TLS. After computing
particle orbits, the program can perform several diagnostic operations in response to commands
in the input file. These are contained in the Diagnostics section that follows the Particles
section. After the Diagnostics section (or if there is no section), Trak looks for the EndFile
command, closes all files, and terminates operation.

15.1 General control commands

Diagnostic commands divide into five classes: 1) general control, 2) electric fields, 3) applied
magnetic fields, 4) beam-generated magnetic fields and 5) field-line or particle orbit quantities.
There are three general control commands:

NSCAN NScan
NSCAN = 100
Set the number of intervals for line scans initiated by the EScan, BScan or BBScan commands.
The default value is NScan = 50.

INTERP [E,B,BB] [LIN,LSQ]
INTERP(BB) = LIN
The electric and magnetic field calculations in the EPoint, EScan, BPoint, BScan, BBPoint or
BBScan commands may employ either the linear or least-squares-fit method. The string param-
eter may assume the values LIN or LSQ. The command affects subsequent field calculations.
Multiple Interp commands may appear in the Diagnostics section.

DUNIT DUnit
DUNIT = 39.37
Change the unit conversion factor for the input of spatial quantities in the diagnostic commands.

15.2 Electric field diagnostics

These commands may be used to record the final state of the electric field. These calculations
function only if an electric field mesh has been loaded. Note that calculations are performed on
the final field solution which may include the effects of scaling, spatial shifts and beam space
charge.

EDUMP FPrefix
EDUMP = KlyMod
Record a file of electric field values with the name FPrefix.EOU in the current directory. The
file may be loaded into EStat or Trak for plotting and analysis. It may also be used as input
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to a subsequent Trak run. For instance, you may want to generate detailed edge orbits in the
self-consistent fields of an ion gun.

EPOINT = (X, Y, Z)
EPOINT = (0.0, 0.0, 12.0)
Record a computation of the electric field at the point (X, Y, Z) in the listing file using the
current interpolation method. Enter the coordinates in units set by the current value of DUnit.

ESCAN (X1, Y1, Z1) (X2, Y2, Z2)
ESCAN (0.0, 0.0, 12.0) (5.0, 0.0, 12.0)
List electric field values along the scan line from (X1, Y1, Z1) to (X2, Y2, Z2). Enter the coordi-
nates in units set by DUnit.

15.3 Magnetic field diagnostics

The following commands record values of applied magnetic field if a magnetic solution has been
loaded with the BFile command. The values reflect the actions of scaling and shift operations.

BDUMP = FPrefix
BDUMP = SolShift
Record a file of the magnetic field values used in the simulation with the name FPrefix.BOU

in the current directory. The file may be loaded into BStat or Trak for plotting and analysis.
The command functions only if a solution has been loaded with the BFile command.

BPOINT = (X, Y, Z)
BPOINT = (3.0, 3.0, 0.0)
List the value magnetic field calculated from all sources at the point (X, Y, Z). Enter coordinates
in units set by the current value of DUnit. Depending on the commands of the Fields section,
the calculation may include contributions from a finite-element mesh, a table of on-axis values,
uniform field components, or an azimuthal field created by a wire.

BSCAN (X1, Y1, Z1) (X2, Y2, Z2)
BSCAN (2.0, 0.0, -3.0) (2.0, 0.0, 15.0)
List magnetic field values calculated from all sources along the scan line from (X1, Y1, Z1) to
(X2, Y2, Z2). Enter the coordinates in units set by DUnit.

15.4 Diagnostics of beam-generated magnetic fields

The following commands write values of the beam-generated magnetic field. They function
only in RelMode calculations.
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BBDUMP = FPrefix
BBDUMP = HTest
Write node values used for the calculation of a beam-generated magnetic field to the file
FPrefix.BBD in the current directory. The file has a format similar to the output files of
EStat and PerMag. For a cylindrical simulation the recorded quantities are Bθ (in tesla)
and the enclosed current at the node (in A). The quantities in a planar simulation are Bz

and the enclosed linear current in A/m. You can load the file in Trak to create plots of the
beam-generated magnetic field.

BBPOINT = (X, Y, Z)
BBPOINT: 5.5 6.2 12.3
List the beam-generated magnetic field at the point (X, Y, Z). Enter coordinates in units set
by DUnit.

BBSCAN = (X1, Y1, Z1) (X2, Y2, Z2)
BBSCAN = (2.0, 0.0, -5.0) (2.0, 0.0, 13.0)
Lists values of the beam-generated magnetic field along the scan line from (X1, Y1, Z1) to
(X2, Y2, Z2). Enter the coordinates in units set by DUnit.

BBBOUNDARY NReg
BBBOUNDARY(5)
Write a list of facet currents along a collector surface composed of nodes with region number
NReg. Trak locates the intersection of the collector surface with the axis and then moves
radially outward calculating the total enclosed current and current density from the associated
facet currents and areas. The routine can provide useful calculations of current density vari-
ations on target surfaces. You may want to define special collector surfaces and/or apply the
RelBeam mode in non-relativistic calculations to utilize the capabilities of this command.

CDENS ZPos Rmax NR
CDENS XPos Ymax NY
CDENS 5.0 1.5 20
Employ information on the beam-generated magnetic field stored on the electric field mesh to
generate a transverse scan of the beam current density. Sometimes, it may be useful to simulate
a non-relativistic beam in the RelBeam in order to use this diagnostic. In cylindrical geometries,
the parameters are Zpos (the z position for the scan), Rmax (the outer radius for the scan) and
NR (the number of radial intervals). The inner scan radius is always taken as the minimum
radius of the solution volume (where Bθ = 0.0). In planar geometries, the parameters are Xpos

(the x position for the calculation), Ymax (the outer displacement for the calculation) and NY

(the number of intervals in y). Trak issues an error message if Ymin ≤ 0.0. The calculated
values may be subject to large numerical errors if the number of model particles is small or if
there are accumulated errors in the orbit calculations. Table 15 shows an example of the listing
for a cylindrical simulation:
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Table 15: Listing created by the CDens command

Current density derived from the beam-generated magnetic field

Axial position, X: 5.00000E+00

r Jz

======================

1.5000E-02 4.2624E+06

4.5000E-02 3.2274E+06

7.5000E-02 2.9988E+06

1.0500E-01 2.8971E+06

1.3500E-01 2.8448E+06

1.6500E-01 2.9201E+06

1.9500E-01 3.1195E+06

2.2500E-01 3.6695E+06

2.5500E-01 3.3201E+06

2.8500E-01 3.0915E+05

15.5 Orbit diagnostics

The final set of commands writes information about particle orbits (or field lines) to the listing
file. The final positions used for the calculation may depend on the presence of Diag or Stop
commands in the Particles section.

PARTLIST [SymType]
PARTLIST Rect
Make a formatted listing of initial and final positions and momenta for a particle simulation.
The list contains only coordinate values in a field line simulation. The parameter SymType
may have the values RECT or CY LIN . In the default mode (RECT ) components are given
in Cartesian coordinates. If SymType = CY LIN , then values are converted to cylindrical
components relative to the z axis.

PARTFILE FPrefix
PARTFILE = Part02
Write a file FPrefix.PRT of final orbit parameters to the current directory in the standard
particle file format. This file can be used as input to a subsequent Trak run or for distribution
analyses in GenDist. This command does not function in the FLine mode.

REGLIST
This command initiates a list of particle collisions with material volumes organized by region.
Information includes the total number of hits, the weighted number of particle collisions in
secondary simulations, and the total deposited current. Note that region 0 includes all other
particle termination events (e.g., left the solution volume, exceeded Tmax, ...).
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PARTDIST
Write a list of beam distribution properties using the final orbit parameters. Calculations
are performed relative to the z axis, independent of the symmetries of the field solutions.
Quantities include the root-mean-squared widths, angular divergences and emittances in the x
and y directions. Trak makes a special emittance listing for cylindrical beams, calculating the
value corresponding to a uniform azimuthal distribution of model particles. If the simulation
involves space charge, the distributions are weighted by the model particle currents. You can
perform similar calculations interactively in GenDist by creating a particle output file with
the PartFile command.

DISPLIST
Make a simple listing of initial and final orbit displacements from the axis. In cylindrical
simulations the tabulated quantities are ri and rf , while yi and yf are recorded for planar
simulations. This information can be useful to assess the optical quality of a charged-particle
gun. If the gun produces a laminar beam, a plot of ri − rf follows a straight line.

JSOURCE
Record a list of smoothed current density on emission facets ordered by region. Table 16 shows
an example. The smoothing routine uses a least-squares-fit to a fourth-order polynomial. The
independent variable is distance from the start point of the region. Only even terms in r (or
y) are used if the emission surfaces contacts an axis of symmetry. In the case of cylindrical
solutions, a weighting function proportional to r is applied so that errors in the calculated
current density for low-current particles near the axis do not skew the results. Figure 35
illustrates the fitted function for a cylindrical beam.
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Table 16: JSource command listing

--- Smoothed emission-facet current density ---

N NReg ZAvg RAvg JAvg

===========================================

1 2 1.009E+00 5.000E-02 4.020E+02

2 2 1.009E+00 1.500E-01 4.020E+02

3 2 1.009E+00 2.500E-01 4.020E+02

4 2 1.008E+00 3.500E-01 4.020E+02

5 2 1.008E+00 4.500E-01 4.021E+02

6 2 1.007E+00 5.500E-01 4.021E+02

7 2 1.007E+00 6.500E-01 4.021E+02

8 2 1.006E+00 7.500E-01 4.022E+02

9 2 1.005E+00 8.500E-01 4.023E+02

10 2 1.005E+00 9.500E-01 4.023E+02

11 2 1.004E+00 1.050E+00 4.024E+02

12 2 1.004E+00 1.150E+00 4.024E+02

13 2 1.004E+00 1.250E+00 4.024E+02

14 2 1.003E+00 1.350E+00 4.024E+02

15 2 1.003E+00 1.450E+00 4.025E+02

16 2 1.003E+00 1.550E+00 4.024E+02

17 2 1.003E+00 1.650E+00 4.024E+02

18 2 1.002E+00 1.750E+00 4.023E+02

19 2 1.001E+00 1.850E+00 4.023E+02

20 2 1.000E+00 1.950E+00 4.021E+02
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Figure 35: Weighted current-density smoothing for a cylindrical beam. Blue squares represent
values for individual model particles, the red line is a fourth-order fit. Note the effects of small
interpolation errors at element boundaries and near the axis.
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Index

advanced capabilities, 5
angular spread, 64
applications, 4
atomic mass unit, 44

ballistic mode, 35
beam physics references, 4
beam-generated fields, 9, 67, 71
bitmap superposition, 31
boundaries, plot, 27, 35

Charged-particle Beams, 5
Chebyshev, 39
Child law, 9, 13, 20, 63, 85
circular beam tool, 24
cloud-in-cell method, 34
command

Combine plots, 31
Save current plot, 31

command-line operation, 24
commands

Avg, 62
BackTrack, 75
BBBoundary, 101
BBDump, 27, 101
BBFile, 80
BBPoint, 101
BBScan, 101
BDump, 100
Beta, 21
BFile, 40
BFilePrefix, 17
Boundary, 35
BPoint, 100
BScan, 100
BTable, 41
BTheta, 42
BUni, 42
CDens, 14, 101
ChangePot, 38
Charge, 18
Close field file, 27
Close orbit and field files, 27

Close orbit file, 27
CNeut, 81
DEmit, 20
DGap, 22
Diag, 51
DispList, 103
DMax, 48
Ds, 19, 57
Dt, 18, 24, 47
DUnit, 18, 35, 99
Edit, 23
EDump, 27, 38, 99
EFile, 36
EFilePrefix, 17
Element outlines, 30
Emit, 46, 56, 64, 76, 84, 90
EPoint, 100
EScan, 100
FFile, 56
Field file information, 27
Field plot type, 30
Field quantity, 30
FList, 55
Grid control, 30
Interp, 48, 99
JSource, 103
ListOn, 52
Load beam magnetic field, 27
Load electric field, 26
Load magnetic field, 27
Load orbits, 26
Mass, 18
Material, 50
MaxCycle, 12, 19, 39
ModFunc, 36, 40
NCorrect, 22, 91
NCycle, 19, 62
NInit, 22, 91
NPerSeg, 18
NScan, 99
NSearch, 48
NSkip, 13, 28
NSurface, 22, 91
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NTrackMax, 48
Number of contours, 30
Omega, 39
OrbInfo, 52
Orbit file information, 27
Orbit filters, 28
Orbit plot type, 28
PartDist, 103
PartFile, 102
PartList, 102
PFile, 44, 61, 76
PlasmaParam, 91
PList, 43, 61, 76
Plot, 23
Plot limits, 30
PlotOff, 52
PlotSkip, 52
Polarity, 19
Record, 51
Reflect, 52
RegList, 98, 102
RelBeam, 12
RelMode, 69, 76
Reset plots on load, 31
ResTarget, 12, 20, 39
ReStart, 69
RSeed, 65
Run, 23
Secondary, 50, 98
SecondList, 98
SecondParam, 98
Set plane, 34
SetUp, 11, 23
Shift, 36, 40
Solve, 12
Start, 47, 57
Stop, 23, 50
Suppress, 65, 84
TMax, 48
Toggle plot recording, 34
Vacuum, 49
WorkFunc, 21
XY magnifications, 30
ZeroPoint, 74

computational mesh, 8
conformal mesh, 11, 49

convergence conditions, 20, 62, 65, 90
conversion, centigrade to eV, 64
cubic spline, 41
current density

Bohm limit, 85
calculation, 101, 103
smoothing, 89, 103
space-charge limit, 85

current density calculation, 13, 34
current neutralization, 80

diagnostic plane, 51
distribution plots, 33

editor, internal, 23
electric field solution, 8, 20, 39
electron charge, 44
electron volt, 44
emission surface, 18, 45, 63

defining, 45
procedure, 45

enclosed current, 71, 101
EStat, 11

facet current, 72, 101
facets, elements, 46
FEmit mode, 21, 82
field emission, 82
field interpolation, 48
field line

polarity, 19
tracking, 19, 55

field modulation, 36, 40, 54
field scaling, 36, 40
field symmetry, 8, 36, 40, 61
file functions, 7
filters, 28
finite-element method, 8
FLine mode, 19
Fline mode, 55
Fowler-Nordheim equations, 82

GamBet, 45
GenDist, 4, 6, 45, 102
grid intervals, setting, 30
gyroperiod, 47

instruction manual, 23
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interactive mode, 23
ion gun design, 94
ion mobility

definition, 59
integrals, 59
reduced, 59
spectrometry, 59

isochronous system, 48

learning the code, 5
line region, 45
list input, particle, 43, 61
list input,field, 56
listing file, 13

magnetic field solution, 8
magnetic field table, 41
magnetic fields, adding to plot, 31
material defaults, 49
material region, 49
mathematical functions, 38
Maxwell distribution, 65
Mesh, 10, 45
model particle, 9

neutralization, 80

orbit plot file, 26

package components, 4
paraxial motion, 67
particle list quantities, 44, 61
particle starting time, 54
phase space plot, 34
Pierce gun, 92
pinched-beam diode, 76
plasma, 85

free surface, 85
plasma effects, 80
plasma meniscus, 87
Plasma mode, 21, 85
plasma model limitations, 89
plot file, 13
plot types

current density, 34
field, 30
orbit, 28

phase space, 34
Poisson equation, 62
Principles of Charged Particle Acceleration, 4
PRT file format, 44, 102

ray tracing, 61
record planes, rules, 51
reflection plane, 52
relative residual, 20, 39
relativistic energy factor, 68
relativistic mode, 67
RelBeam mode, 19, 71
restart run, 69
restart tun, 80

SCharge mode, 19, 61
script

Diagnostics, 17
Fields, 16
Particles, 16
structure, 16

secondary electron emission, 95
secondary emission coefficient, 95
secondary region, 49, 95
self-consistent calculation, 9, 61
solution procedure, 6
source limit, 64
source temperature, 64
space charge, 9, 61
space-charge averaging, 62
space-charge neutralization, 80
space-charge-limited emission, 63
stop plane, 50
stopping condition, 8, 49
surface current, calculation, 72

tabular function, 41
tabular functions, 37
temporal tables, 37
time step, choosing, 47
time-of-flight, 59
time-step calculator, 24
toroidal field, wire, 42
Track mode, 17, 43
tracking modes, 9, 16
triple point, 87
true-scale mode, 30
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unit conversion, spatial, 35

vacuum region, 49
virtual emission surface, 20, 63

work function, 21, 84

XY magnification mode, 30
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